










Preface 

The originality of this book is to train undergraduates, who have grown up 
during the computer revolution, in the core parts of those computer tools 
intended to help chemists, with graphics assistance, in handling molecular 
representations. The goal is complex, as there is an important synergy in the 
creative design of molecules or properties between the fundamental theories of 
chemistry and their computational extensions. 

This duality, felt constantly through the last thirty years, has led to 
immense progress thanks to major developments in both chemical informatics 
and computational chemistry. 

The authors, well known actors in this transformation of chemistry, have 
identified in a single book the foundations of the modelling and design 
successes in chemistry. Their aim is to teach some crucial components both in 
the computer field and in theoretical chemistry, often closely linked in 
CAMD. The two authors, who have participated in the deployment of CAMD, 
have identified and selected, with talent and efficiency, its fundamental 
elements. Their teaching is clear with alternate explanations and applications. 
The task was not simple, as these elements are shadowed by the progress of the 
information revolution and the rapid advances of molecular modelling. The 
synergy of these actions often obscures the identification of those basic 
components essential for an up to date course. 

Thus, Computer Aided Molecular Design (CAMD) is identified as a mature 
discipline. The theoretical and practical aspects of its potential and of its basic 
tenets are described. Applications are chosen to underline the power of various 
CAMD strategies. 

There are many reasons for such a course at the undergraduate level. 
Students are usually familiar with the information revolution, and they know 
that the rapid evolution of science and technology makes it imperative to 
acquire generalized training enabling them to deal with many changes in their 
active life. They are sensitive to the radical changes around them in 
communication fields, and they are aware that equivalent transformations 
and mutations are taking place in science and technology. These affect our 
vision of science but also modify our working methods both in our chosen 
field of activity and in the methods we use. A brief sample enumeration of 
such trends helps to justify special training such as CAMD. Let us cite, for 
instance: the dramatic improvement expected in data and information 
sharing; CAMD collaboration (online or offlinr between researchers and 
engineers separated by physical distance; the increase use of visual tools and 
methods for viewing, animating, interacting with CAMD mechanisms; the 
development of heuristic design through intelligent agents endowed with 
browsing capabilities. 

For chemists to take advantage of all this, it is essential to point out that 
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chemistry is based on numerous concepts conferring more or less precise 2D or 
3D shapes on 'invisible' molecules. 

The imaginary world of chemistry is thus geometrical, shape oriented and 
thereby open to graphics. Molecular species lead to either property maps or 
volumes incorporating all information derived from the molecular paradigm. 
Graphics presentations are used to handle the conceptual nature of bonds, the 
conformational flexibility of entities and chemical transformations. 

This knowledge will be necessary for the future chemist if he is to make free 
use of modern tools. 

J. P. Doucet and J. Weber have woven together the powerful tools of 
classification and correlation that help conduct similarity searches. Here the 
basic blocks are those derived from fragmentation or topological procedures. 
They are used to build adequate working 'spaces of states' suited to correlation 
searches. 

Molecular similarity is presented in a drug design application to illustrate 
the complexity involved in the search of a 'lead' drug and the difficulties 
encountered in estimating the embedding of a drug on a biological receptor. 
The book maintains its homogeneity on structural design, but its authors 
successfully tackle CAMD tools and applications in bioinformatics. 

In short, this book presents an excellent package of complementary ideas 
and tools and should greatly help students to master their use of molecular 
software. Instead of blindly applying programs, their knowledge of CAMD will 
give them the freedom required in creative molecular design research. Finally, 
this work should be kept by them as a long term classical reference volume. 

Jacques-Emile Dubois 
Professor, ITODYS, University Paris 7. 
(President of CODATA} 
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Introduction 

The computer-aided design of novel molecular systems has undoubtedly 
reached the stage of a mature discipline offering a broad range of tools available 
to virtually any chemist. Indeed, as various programs, known as model 
builders, enable chemists to readily calculate molecular geometries, it is now 
possible to perform structure-based design applications that give a practically 
unlimited range of novel systems exhibiting specific properties. To this end, 
recent progress in computational chemistry play an important role by leading 
to a realistic description of molecular shape and motion, solvent effects, 
binding free energies, etc. However, it is fair to say that computer-aided 
techniques have in most cases to be used in combination with X-ray, NMR and 
other experimental tools to get a complete design of novel systems. 

The basic concepts of computer-aided molecular design (CAMD) are 
generally taught in different courses such as computer science (numerical 
methods and graphics), physical chemistry (quantum mechanics, statistical 
mechanics and simulation techniques), organic chemistry (molecular 
mechanics and conformational analysis) and biochemistry (protein structure 
and molecular recognition), rather than in a specific course devoted to CAMD. 
A similar statement is probably also applicable to books, as the corresponding 
material is often spread out in various monographs presenting more general 
subjects. The authors found it useful to collect, in a single book, a description 
of the theoretical foundations of CAMD together with applications illustrating 
their practical implementation on computers, with a special emphasis on drug 
design and protein modelling. Both authors have a long experience in teaching 
various topics of CAMD, and have found it useful and timely to put together, 
harmonize and update various teaching material on CAMD. The main purpose 
of this book is to cover all the techniques in a single volume using a language 
that can be understood by second or third year students or by chemists with a 
limited knowledge of theoretical chemistry. 

This book is intended for undergraduate students with some basic 
knowledge of general chemistry, or for course instructors of chemistry who 
can use certain chapters to illustrate the role of computing in conformational 
analysis or molecular recognition, for example. As most of the subjects are 
presented at a rather elementary level, chemists or, more generally, molecular 
scientists who want to refresh their knowledge in CAMD will also find this 
book useful. Finally, is could also be used as a source of reference by 
professionals in their quest for information on the actual possibilities of 
CAMD. 

Since the generation of synthetic images, using a computer, plays an 
outstanding role in molecular modelling and, ultimately, in CAMD, the first 
chapter presents an introduction to computer graphics by reviewing the main 
aspects of the discipline, ranging from hardware characteristics to software 
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features such as graphics primitives, standards, libraries and geometrical 
transformations. The second chapter focuses on the algorithms used to 
generate realistic images of three-dimensional (3D) objects such as surface 
modelling, constructive geometry, viewing operations, hidden lines, and 
surfaces removal and rendering. After the first two technical chapters, devoted 
to graphics in general, Chapter 3 looks at molecular graphics and reviews the 
possible modes of representation of chemical objects. It describes the 
procedures and algorithms leading to the display of molecular shapes generated 
either from structures or properties. As molecular geometry is an 
indispensable piece of information for numerous modelling applications, 
Chapter 4 presents the most common experimental approaches leading to it 
such as X-ray diffraction, neutron scattering and NMR. This chapter gives 
general examples, with special emphasis on the possibilities and limitations of 
these techniques on polypeptides, proteins and DNA. Also it looks at 
structural databases, such as the Cambridge and Brookhaven, with emphasis 
on their organization, possible strategies for searches, and applications to 
nucleosides and structure correlations. 

As modelling is the other alternative to obtain structural information, 
Chapter 5 is devoted to empirical force fields methods and molecular 
mechanics. The main underlying principles of these methods are reviewed 
together with minimization techniques. Also several applications are 
presented, dealing with anti-Bredt olefins, solvolysis rate constants, and host- 
guest systems. A natural extension of these techniques to Monte Carlo and 
molecular dynamics is described in Chapter 6. After making the necessary 
distinction between modelling and simulation, this chapter reviews the basic 
features of simulation techniques by resorting to numerous examples which 
illustrate their importance in CAMD. Relevant topics such as umbrella 
sampling of the configuration space, simulated annealing, free-energy 
pertubation calculations and coupled N M R -  molecular dynamics structural 
refinements are presented. Keeping with structural properties, Chapter 7 
focuses on techniques that explore the conformational space, namely distance 
geometry and model builders. These methods are very important to describe 
molecular flexibility by using a sampling of the conformational space. The 
various algorithms on which distance geometry is based are presented, 
together with applications devoted mainly to peptides. Also several well- 
known model builder packages that allow flexibility to be taken into account 
are introduced such as WIZARD, COBRA, CONCORD, CORINA, etc. in this 
chapter. Chapter 8 is devoted to the calculation of molecular surfaces and 
volumes, which represent important properties in CAMD, as they are strongly 
involved in topics such as intermolecular interactions, drug design and protein 
folding. The various definitions of molecular surfaces are examined, with 
special emphasis on numerical methods that allow their evaluation, and the 
concept of voxel is introduced as a useful tool to characterise and compare 
molecular surfaces and volumes. 

Quantum chemistry methods are another indispensable component of 
CAMD and Chapter 9 present their key features. Starting from the time- 
independent Schr6dinger equation, the usual approximations leading to the 
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Hartree-Fock-Roothaan equations are introduced by keeping the mathematical 
developments at a minimum level. The main features of ab initio SCF and 
post-SCF are also described, with the concern that CAMD practitioners 
probably do not need to be acquainted with all the subtleties of these 
techniques. As they can be found in practically all the program packages used 
in CAMD, both semi-empirical and density functional theory methods are also 
included with several examples illustrating their capabilities. Chapter 10 is 
devoted to the derivation and visualisation of molecular properties calculated 
from quantum chemical methods. This entails molecular orbitals, electron 
densities, molecular electrostatic potentials, electric fields and reactivity 
indices. The basic procedures used to derive and visualize these properties on 
computer displays are reviewed, together with numerous applications 
stressing on their important role in CAMD. 

The comparison of structural characteristics within a set of molecules that 
display common features is a frequent problem in CAMD, relying on the 
general assumption that similarity in behaviour implies similarity in 
structure. It is therefore important to quantify molecular similarity and this is 
the subject of Chapter 11. The most common methods leading to geometrical 
comparisons are presented, followed by a description of the various tools used 
to perform common substructure searches. Also, the process of identifying a 
pharmacophore within large flies of structures is tackled and similarity indices 
used are also reviewed. Proceeding along these lines, Chapter 12 focuses on 
drug-receptor interactions, i.e. receptor mapping and the pharmacophore 
approach. The different techniques allowing to search for 'lead' compounds are 
presented, ranging from the pharmacophore hypothesis to receptor-based 
design and the automated detection of receptor-binding regions. A broad range 
of examples are included, i.e. recent applications of drug design. Chapter 13 is 
devoted to the modelling of proteins and outlines the various techniques 
known today that perform the following applications on these systems: 
structural analysis, 2D, 3D and 4D NMR, model building from homology and 
similarity evaluation. Various examples are presented from recent important 
investigations. 

CAMD is an exciting and burgeomng field, both from a methodological and 
an application point of view. The authors sincerely hope that the readers will 
share their enthusiasm about the discipline when using this book. 
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Generating synthetic images from a computer plays an outstanding role in 
molecular modelling. So it seemed to us useful to introduce some basic but key 
features of these techniques. Obviously, our aim is by no means to present a 
comprehensive study or to examine the algorithms in depth. We wish only to 
give a short introduction to the main aspects of the discipline, to present some 
of the problems commonly encountered, and to sketch some general solutions, 
bearing in mind their applications in molecular modelling. Special emphasis will 
be put on interactive graphics, i.e. techniques which allow the user to generate 
on-line synthetic images and modify them in real-time. Indeed, the chemist 
often has to display representations generated by heavy simulation programs for 
hours of Central Processing Unit (CPU) time (as ab initio MO calculations) but 
he also frequently needs to know rapidly how a chemical system accommodates 
small structural perturbations. Such questions occur, for instance, when 
examining molecular flexibility (conformational changes, sterically induced 
geometrical distortions from standard values, etc.)or dynamic processes, etc. 

For more complete detailed presentations of computer graphics, it is 
suggested that the reader consults specialized textbooks in this field [1-5]. 
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1.1 DISPLAY AND INPUT DEVICES 

To carry on a dialogue with images, one needs a material support which is both 
flexible and very interactive. Any review of chemical graphics is doomed to be 
quickly outdated because of the rapid evolution in graphics support (the annual 
growth of graphics stations was predicted to be about 30% by 1992). This is, of 
course, a matter of hardware development, but it also implies a symbiosis 
between the computer hardware functions and largely integrated application 
programs to fully exploit the machine's capabilities. These mutual influences 
and interactions between software packages and hardware result in a rapidly 
changing field, made still more complex by the lack of defined standards. 

Basically, three main types of graphics hardware systems can be 
distinguished: 

1. Workstations: sel/-governing devices with important storage memory are 
often provided with a mathematical coprocessor and dedicated processors 
to perform graphics operations. Stations now offer both high 
computational power (120 MIPS, 20 MFLOPS are now currently available, 
and some stations even reach 300 MFLOPS)and efficient graphics 
treatments, with fair screen resolution [typically 1280x 1024 pixelsl. 
These devices generally have a user-friendly approach, making it easier to 
fully exploit the qualities of the machine. 

2. Microcomputers ("personal computers"l are now available with faster 
clocks, 32 bit processors, mathematical coprocessors and cards to give 
enlarged graphic resolution on appropriate display monitors. The future of 
this type of device, however, is not clear, since the additional elements 
needed to enhance performance significantly increase the cost, giving 
capabilities still lower than those offered by true workstations. 

3. Graphics terminals have to be connected to a host computer. However, 
they now offer opportunities for local treatments. This may be an 
attractive feature for molecular modelling: complex simulations can be 
carried out on the host computer, while results are displayed locally {and 
therefore rapidlyl on the terminal. 

This evolution is quite rapid. Various (limited} molecular modelling 
packages are now available at the PC level. However, despite their extended 
capabilities, PCs still have some difficulties carrying out heavy MO methods 
for medium-size molecules. With their RISC {reduced instruction set 
computing) architecture and more efficient buses, workstations offer ever 
increasing power. Graphics terminals integrate more sophisticated output 
primitives, and offer better assistance. They still maintain their general 
purpose bias thanks to the computational resources of the host computer. In 
any case, the changes tend to offer to non-specialists a more efficient and 
largely integrated graphics support, so as to free the end-user from the 
technical problems of representation. 

Relevant to the same concern for increasing efficiency, let us note the rapid 
growing up of information and communication networks. At internal level 
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(within a laboratory)this allows for an optimized use of the resources (CPU 
power, graphics capabilities, etc .)from the various machines available. At 
national or international level, particularly thanks to the Internet, it makes 
possible easy and rapid information exchange (data-file transfer, communica- 
tion of softwares, access to databases, etc.). 

1.1.1 The cathode-ray tube (CRT) 

Most display devices now use the standard cathode-ray tube (CRT)(Figure 
1.1 ). However, an increasing number of portable terminals are appearing which 
are provided with a plasma panel display, light-emitting diodes (LEDs) or 
liquid crystal display (LCD). In a CRT, a beam of electrons (cathode rays} 
emitted by an electron gun is directed (after focusing and deflection} towards a 
phosphor-coated screen. Points reached by this electron bombardment emit a 
brief spot of light with an intensity depending upon the kinetic energy of the 
incoming electrons. Deflection plates, set to appropriate voltage levels, allow 
one to direct the beam towards specified points of the screen. The light emitted 
by the phosphors is very brief. To maintain an image on the screen, it is 
necessary to periodically excite the phosphors: this refresh cycle reconstructs 
the image several times a second (about 30 times/s) so the viewer's eye only 
perceives a continuous sensation. 

According to the way in which the electron beam deflection is monitored, 
two techniques can be distinguished: random scan, used in vector (or 
calligraphic) systems, and raster scan. 

1.1.2 Random scan monitors 

The screen is considered as a 2D space provided with an orthogonal coordinate 
system (x,y). To draw a line segment between two points P~(X],Y~) and P~(X~,Y~), 

Focusing and accelerating 
systems 
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Figure 1.1 Schematic representation of a CRT (adapted from Hearn and Baker [1 ]). 
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the electron beam is gradually moved from position P~ to position P~, leading to 
a continuous line on the screen. Graphics patterns are reproduced as line 
drawings, i.e. as if they are composed of line segments, arcs of curves, etc. 

An essential part of all graphics systems is the display processor. Basically, it 
exploits the digital information from the central processing unit (CPU), 
converting it into analogue signals to generate pictures or characters on the 
display screen, and ensuring screen refreshment through a refresh storage area, 
where the picture definition is kept. Graphics commands are gathered in a 
display file, where the line style {dashed, dotted, solid, etc.) and the end point 
coordinates for each line to be represented are defined. These are drawn one 
line at a time during each refresh cycle (Figure 1.21. 

Random scan systems imply only a limited storage area. However, memory 
requirements directly depend upon the picture's complexity. For complex 
drawings with many elementary vectors, the refresh cycle duration is too short 
to refresh the whole picture: this causes "flickering". On the other hand, 
owing to the very compact mode of storage for picture definition, high 
interactivity is achieved: drawings can be modified between two refresh cycles. 
Hardware implementation of varied transformations (rotation, translation, 
zooming) speeds up image modification, and is quite useful for true real-time 
animation sequences. Another advantage is the high quality of the drawing 
produced. Obviously, though, vector systems are unable to represent 3D 
shapes as solid areas ("solid images"). 

1.1.3 Raster scan systems 

Images here are made up by a matrix of discrete cells, each of which can be 
made bright or not. The refresh storage area now contains attributes [intensity, 
colour) for each screen position rather than a list of graphic commands. It is 

Y 

B 

I 
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~ . ~ r  B 

Figure 1.2 Vector and raster displays. Vector system: arrows represent the motion of 
the electron beam on the screen to draw the AB and BC line segments. Raster display: 
the status of each pixel along the scan line is systematically explored, one line after the 
other. Segment AB is represented as a series of enlighted cells on the screen. 
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usually called a frame buffer or bit map. As in TV technology, pictures are 
painted on the screen through a systematic traversal of the frame buffer, along 
horizontal lines (scan line), one line after the other (possibly with interlacing). 
Within each scan line the intensity varies according to the content of the 
corresponding element of the frame buffer: "picture element" or pixel. In other 
words, a pixel may be defined as the smallest element of a display that can be 
independently assigned a colour or an intensity. By contrast with calligraphic 
devices, the frame buffer is always examined in its entirety, so raster images do 
not suffer from any flickering, provided the refresh time is not too long (about 
1/60 s). Another interesting point is the ability to represent surfaces filled with 
colours and shading patterns, well suited to the display of solid objects. 

The major drawbacks are: 

its slowness to modify images, since the frame buffer has to be updated 
(some tricks do exist to speed up this step); 
a somewhat minor precision in line drawing, owing to the definition of a 
line as a succession of pixels. Aliasing (stairstep effects) may occur if some 
special treatment is not carried out, or with lower resolution systems 
(Figure 1.3). Raster systems are thus more naturally devoted to the 
representation of static images and 3D solid shapes, where rendering 
effects (hidden part removal, shading, etc.) contribute towards giving more 
realistic displays. 

1.1.4 Resolution 

The quality of the image obviously depends upon the number of points which 
can be displayed on the CRT screen. High precision CRTs provide about 4000 
x 4000 points. However, it also depends upon the capability of the upstream 

Figure 1.3 Aliasing causes the stepping appearance of oblique lines on a low 
resolution raster screen. 
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computer (resolution of the display processor or frame buffer). For raster 
systems, r e s o l u t i o n -  initially low at the beginning of the t e c h n i q u e -  
gradually becomes more respectable; for PCs, typical values range from 300 • 
200 to 1024 • 1024. For more sophisticated devices, values of 1280 • 1024 are 
commonly proposed, and can reach up to 2048 • 1568. Note that a resolution 
of 1024 • 1024 implies handling more than a million differing pixels. 

1.1.5 Colour screens and colour models 

Most video monitors generate colours by combining various amounts of three 
primary components. Green, red, blue have been chosen as "primary colours" 
in the so-called R GB additive system. Three separate electron beams are used, 
each exciting corresponding sets of phosphors. Three primary colours, on a 
binary status only (on/off), allow for displaying eight colours, as schematized 
in the RGB cube model (Figure 1.4), where each pure colour is defined by its 
components along the three axes R, G or B. Combining different intensity 
levels allows us to generate a wider range of colours, as in half toning 
procedures: expanding each position in the scene to a 2 • 2 pixel grid (giving a 
five-level setting per primary colour) leads to 125 possible colours. 

More flexibility is attained with a look-up table: the frame buffer is 
considered to be formed by a packet of several successive bit maps (Figure 1.5). 
Each pixel is described as a series of bits. This series defines a binary number 
used as an address in the look-up table. At this address, the display processor 
will find the percentages of the elementary colours (Red, Green, Blue). This 
technique provides a large number of colours to be displayed, but it is a 
function of the number of bits allowed for the screen description: 4 bitplanes 
define 16 entries in the look-up table. With 9 bits per entry (three for each of 
the three components R, G, B), the 16 colours may be selected from among a 
pallette of 512 possible. These numbers depend upon the display device, but 
these capabilities are more or less efficiently used by the application programs. 

~.~ Btue Cyan 

I Bta~:k I I- I - ' ' ' L  - - I- ~ l '~ reen 
L , , "  

R , ~  Yettow 

Figure 1.4 The RGB additive colour model. Each colour point within the unit cube is 
represented by a triple (r,g,b)where intensities of the primary colours r, g and b are 
defined in the range 0, 1. Black is at origin; shades of grey correspond to the main 
diagonal (black, white). 
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Figure 1.5 Look-up table. Each pixel is decribed as a series of bits characterizing its 
status in each bit plane {represented here by 0 or 1 in the upper right comer of the bit 
plane}. The binary number so formed defines an address in the table. At this address the 
intensities of the r, g, b primary colours for that pixel are indicated. 

What characteristics [6] can be used to define more precisely what a colour 
we perceive may be.~ 

Colour (or hueJ directly relies on the wavelength of the corresponding 
electromagnetic radiation {Blue: about 400 nm~ Green: 530 nm~ Red: 700 nm). 
Let us note also that when a white light is reflected by a coloured object, some 
frequencies are absorbed, and therefore are missing in the reflected beam. 

Other important properties are brightness, related to the intensity of the 
source, and purity [or saturation}. Pastels or pale colours look more "washed" 
than pure colours Usually, the light coming to the observer encompasses a 
large frequency range with a dominant frequency over a continuous 
background {white light}. The hue is fixed by the dominant frequency, and 
purity describes how much the dominant frequency exceeds the background. 

Derived from the RGB model, the HSV colour model not only takes into 
account the hue but also its saturation {amont of white} and its value related to 
its black component [1 for pure colour, 0 for blackl. The hexagon (at the basis 
of the hexconeJ corresponds to the RGB cube viewed along its diagonal 
{representing white light). Saturation is measured on the horizontal radius and 
value on the hexcone axis {Figure 1.6}. 

For printers or plotters giving hard copies where we perceive colours by 
reflection, the Cyan, Magenta, Yellow (CMY) system operates by the 
subtraction of components within these three primary colours {whereas the 
RGB system acts by additionj[ 1 ]. 

According to Hearn and Baker [1 ], the human eye may distinguish about 128 
hues and 130 different saturation levels {tints). Discernible shade levels depend 
upon the colour {about 16 in the blue area, 23 in the yellow), amounting to about 
380 000 different "colours". Such a diversity is not easy to handle: treating 128 
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Green I V Yeltow 
C Y Q n ~ R e d  

Figure 1.6 The HSV hexcone. Values V = 0 and V = 1 on the vertical axis (value) 
correspond respectively to Black and White. Saturation (S) is measured by the distance 
to the vertical axis (for pure colours, V = 1 and S = 1 ). Hue (H) is defined by the angle 
about the vertical axis (0 for Red to 360~ 

hues, 8 saturation levels and 15 value settings amounts  to nearly 16 K levels 
and would require 14 bits per pixel. However, a look-up table can reduce 
storage requirements.  As for black and white pictures, 16 grey intensity levels 
at least are necessary. 256 levels (on a logarithmic scale) give results that are 
nearly as good as a photograph [7]. 

1.1.6 Printer and plotter 

Hard copy pictures can be obtained by directing graphics output to a plotter or 
printer. Dot matrix printers, commonly available on PCs, for instance, allow 
for typing pre-defined alphanumeric characters by pressing an inked ribbon 
onto a sheet of paper. They can also accommodate any dot pattern to be 
reproduced thanks to appropriate interfaces. Ink jet, laser and electrostatic 
methods consti tute non-impact  techniques, where electric field or 
electrostatic effects are used to transfer a toner or direct a stream of ink 
towards a sheet of paper. Plotters reproduce line drawings, mainly using ink 
pens, although other techniques (ink jet, laser) are available for both line 
drawings or filled area representations. 

1.1.7 Interactive input devices 

The most familiar device to input data and communicate  wi th  the computer is 
the alphanumeric keyboard. Additionally, for graphics applications, cursor 
control keys can be used to specify the position of a cursor on the screen. 
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However, to handle the graphics information, some other devices are often 
more convenient, among which are: 

�9 dials and potentiometers  directly monitoring pre-defined graphics 
functions, 

�9 joystick or trackball, 
�9 lightpen or touch panel for LED units, 
�9 graphics tablet (probably the most  accurate method for selecting ' 

coordinate positions), and 
�9 mouse, widely used on PCs or workstat ions for packages provided with  

pop-up menus.  

1.2 ELEMENTARY GRAPHICS PRIMITIVES 

Synthetic images are generated thanks to output  primit ives:  routines which 
allow the display processor to generate those elements consti tut ing the picture 
on the screen. The screen is considered as an or thonormal  coordinate system 
in which the motions of the spot and the end points of the line segments or 
curves to be drawn are defined. Among the very basic elementary instructions 
(existing in all systems, with perhaps small syntax d i f fe rences) i s  the 
generation of some simple geometric features: point, line, circle, etc. 

Instructions more or less similar to MOVE (x,y) and DRAW (x,y) allow us to 
locate the spot at the specified position (x,y), or to draw a line segment from 
the current spot position to point (x,y)(Figure 1.7). 

POLY (n,x,y) draws a polygon with the n points (x,y) as successive vertices. 
A R C  (r,a,,a~)draws an arc of a circle centred on the cursor position, wi th  r as 

the radius. The arc is drawn between angular positions a,,a~. 
More sophisticated routines include filling areas delimited by polygons with 

colours or encompass sets of elementary instructions to carry out, as pre- 

X 

~..~(xs,es) 
(x~,e6) 

(x,,e,) 

(x3,ya) 

. . - y  

Figure 1.7 Instructions MOVE (xl,y]) and DRAW (x2,y2) bring the cursor to point (x],y]) 
and draw a line segment from (x~,y~) to (x2,y2). The polygon is drawn by instruction 
POLY (5,array), where array contains the coordinates of the vertices of the polygon. 
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defined functions, more complex operations: hidden part removal, lighting, 
shading, display of strings of characters, etc. 

According to the capability of the display device and its degree of 
integration, some of these graphics primitives, as well as subroutines for image 
manipulation {geometrical or viewing transformations], can be implemented 
in hardware for faster operation and greater efficiency. 

1.2.1 Line drawing 

A point plotting routine takes coordinate information, as input, and selects the 
phosphors to be turned bright as output. In a CRT random-scan device, this is 
accomplished by setting appropriate deflection voltages on the electron beam. 
In raster systems, the corresponding screen pixels are enlightened {i.e. the 
phosphor is submitted to the electron beam] when scanning the frame buffer 
one line after the other by the display controller. A line is then drawn as a 
succession of pixels between its two end points {Figure 1.8). 

For a line segment between two points (X~,Y~) and {Xz, Y2}, the equation is: 

Y = a X + b  

where: 
a = (V~ - Y , ) / { X ~  - X,) b = Y,-  aX, 

Rather than the brute line equation, differential expressions are generally 
preferred in order to use incremental methods, which are more rapid. In the 
digital differential analyser {DDA), the pixel position is calculated with: 

A Y = a ~  

The current-pixel abscissa K is changed by unit steps, starting from the first 
point (i=1} of the segment. The corresponding K value is calculated, and then 
rounded off: 

Yl i  + II = Yi+a 

(if the slope is greater than 1, the role of x and y are reversed. If X2 < X,, AX is 
taken as -1). 

OOO ~ 
. . . _ _  w 

x 

Figure 1.8 In a vector system (left}, a line is drawn by continuously moving the 
electron beam from P, to P2. In a raster system (right), a line is formed by a succession 
of enlightened pixels. 
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The Bresenham's line algorithm [8] also uses a differential expression: at 
each iteration step, where one coordinate changes by + 1, the problem now is 
to determine if the other coordinate has to be modified or not. Given the 
current point, the choice between its possible neighbours is set by examining 
their distance to the real line (distance measured perpendicular to the axis of 
greatest movement)(Figure  1.9). 

Xi+ 1 ,Yi+ 1 

~ 

(a) xi, yi x j+ l ,y i  (b) 

I 

I 
L.-; 

Figure 1.9 Bresenham's line algorithm. (a) The pixel centred at xi, y; being plotted, the 
choice between pixels (x,+~,y;) or (x;+,y,+,) depends upon the distances d~ and d2. Here 
pixel (x,+,y;) is preferred. Only the centre of each pixel is represented. (b) Centres of the 
enlightened pixels (dots) and the tree line to be drawn (solid line). 

1.2.2 Antialiasing 

Since they are made up of discrete pixels, lines may suffer from a stepping 
appearance. Antialiasing routines improve the look of the image [9, 10]. In the 
sampling approach, one takes advantage of the fact that  the pixels and the line 
drawn have finite dimensions: each pixel traversed by the line (in fact a 
rectangular area of about one pixel in width) is given an intensi ty proportional 
to the relative surface overlapped by the "line" (Figure 1.10). 

r ~  

J 
J 

Figure 1.10 Antialiasing. The intensities of pixels a and b are set to about 75% and 
10% of the maximum (adapted from Heam and Baker [I]). 
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1.2.3 Circle generation 

Circles or derived shapes (ellipses, etc.) are largely used in computerized 
images, and are therefore often proposed as output primitives in graphics 
systems. 

Although Cartesian or polar parametric equations are available: 

(X-Xc) + = o 

and: 

Figure 1.11 

(centre C(Xc, Y~), radius r)(Figure 1.11) 

m 

X = X~ + r cos 0 
Y=Yc+rsinO 

Polar coordinates t o  represent a circle. 

The Bresenham's circle algorithm [11] largely reduces the computational task. 
As for straight line drawing, given one pixel already plotted, the next one is 
selected from among the neighbours, choosing the closest to the circle. 

Similar methods can be used for several other common functions (including 
polynomial expressions, splines etc.). Otherwise, the individual data points are 
connected by line segments to give a continuous curve. 

1.2.4 Characters 

In raster systems characters are easily defined thanks to a dot matrix {usually 
of 5 • 7 to 9 x 14 positions). When required, this matrix is copied at the 
selected position of the frame buffer. Strings of characters can thus be 
incorporated in pictures (Figure 1.12). Standard fonts are generally stored in 
the memory, but some graphics packages provide the capability for user- 
defined symbols. In vector devices, characters may be drawn as line 
segments. 

BBC 
Figure 1.12 Generation of a character from vectors or pixels of a dot matrix. 
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1.2.5 Attributes 

All these graphics primitives may be given attributes to vary their appearance 
on the display: colour, style (dashed, dotted, etc.), width for lines; size, 
orientation for characters, etc. 

Attributes can be defined to be used with a given graphics device, so other 
devices may be unable to reproduce them. Building a bundled table allows for 
specifying which attributes are generated by different output devices, and can 
so activate diverse workstations, thus increasing portability. 

1.2.6 Area filling 

Area filling intervenes when displaying representations of solid objects limited 
by coloured faces. For this we need to know what pixels on each scan line are 
internal to the polygonal contour limiting the face. 

Interior stretches can be defined by determining the intersections of the 
current scan line with the polygon edges (Figure 1.13). 

G7 
Figure 1.13 For each scan line, the pixels interior to the polygon have to be 
enlightened. 

Note that if a convex polygon is described counterclockwise, an observer 
moving along the edges always has his left-hand inside the polygon (Figure 1.14). 

C 

E 

A 

Figure 1.14 The polygon (A,B,...,E)is described counterclockwise. 

A convex polygon is described counterclockwise if, for three successive 
vertices A,B,C, the cross product AB x BC is positive. Similarly, to determine 
if a point P is at the left of the vector P,-P2, it suffices to examine the sign of 
PIP, x PIP: 

c: (x~-x,)(Y-Y,) - (Y,-Y,)(x-x,) 

If C > 0, P is on the left side of the vector P1P2 (Figure 1.15). 
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P 

X 

Figure 1.15 Determining the position of point P. 

Some caution is necessary when the scan line encounters a vertex: 
examinat ion of the Y variations along the edges removes the ambiguity {Figure 
1.161. Taking into account coherence in the object {a scan line is generally not 
very different from the preceding one) may largely reduce the computat ion 
time. For a detailed presentation of the algorithm and techniques of 
antialiasing, see Hearn and Baker [1]. 

1.2.7 Graphics standards and graphics libraries 

Portabil i ty is an essential condition for designing simulat ion packages that can 
be widespread and easily transferred from one installation (workstation, 
graphics terminal) to another. It is also important  to aid the understanding of 
graphics methods by application programmers, and to make the use of graphics 

aAb 

c! \ d  el \ f 

Figure 1.16 Determination of interior stretches. Given a polygon described in a 
continuous order: 

scan lines 1 and 2: pairing successive intersection points, a-b or c-d; e-f defines the 
internal stretches; 

scan line 3: at vertex P one edge has decreasing Y, the other increasing Y when 
moving sequentially on the polygon contour. P is considered as two (or zero) 
intersection points limiting two internal segments; 

scan line 4: at vertex Q the two edges correspond to variations of Y in the same 
direction. Only one intersection point is set in Q. 
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in applications easier. Here are the goals of many efforts for the standardization 
of graphics software, a task of prime interest but perhaps not yet completely 
fulfilled. Once defined and accepted as standard, a set of basic graphics 
functions can be collected in a library to be used when developing 
applications. This avoids writing repeatedly the same instructions for carrying 
out basic and frequently called graphics operations. 

A good graphics library must offer: 

�9 restricted number of basic primitives, easy to use, 
�9 existence of high level primitives, 
�9 non device-dependence, and 
�9 clear definitions, non language-dependent. 

As for the last criterion, it can be met by defining a set of functions 
performing graphics operations independently of any programming language. 
For their implementation, language bindings (language dependent layers) were 
defined, which allow us to access the various graphics functions within 
specific languages such as Fortran, Pascal, C, etc. 

The possibility to write applications indendent of the physical device can be 
achieved thanks to the concept of "workstation", in fact an abstract graphics 
device (not an actual physical device)wi th  typical characteristics (simple 
logical interfaces controlling the physical device). Of great help in the field are 
also inquiry functions, which allow the user to retrieve information about the 
capability and state of the graphics system. 

The more basic elements which can be easily implemented on any material 
include 2D (and 3D) tracing. More refined functions correspond to: 

�9 changing the reference system, 
�9 parameterizing the display, 
�9 graphics input, 
�9 error handling, 
�9 utilitarians, 
�9 segments or structures (for local storage of subobjects, formed from several 

geometrical primitives, and better interaction), 
�9 metafiles, allowing us to store and recall an audit of the calls to graphics 

functions in a picture generation session. A metafile can be interpreted so 
as to reproduce the picture created by the original application, or used for 
long-term graphics data storage. 

The Graphical Kernel System [GKS) [12], developed since 1976 and resulting 
from wide international cooperation, became an ISO (International Standard 
Organization} standard in 1985. It may be considered as the first international 
standard in the field, giving a methodological framework, and a source of 
common understanding and terminology. Originally devoted to 2D graphics, 
GKS was subsequently extended to 3D. 

As for output primitives, although only six types of object are supported by 
GKS, they allow for building any type of drawing (Figure 1.17). They are 
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./r .k 

Polyline Polymarker Fill area 

l m m m l  �9 �9 �9 �9 primitive 

Cell array Text GDP 

Figure 1.17 Examples of GKS primitives [13]. 

polyline (polygonal line drawing), marker (to put small symbols on the 
vertices, without drawing edges), bit map (cell array), polygon (filling areas), 
text (for strings of characters)and call to generalized drawing primitives (GDP) 
(workstation dependent). These objects may be given attributes. The library is 
organized in hierarchical levels of increasing complexity or layers. The lowest 
level contains only a minimal set of output functions; the highest includes the 
more complex functions (input, workstation, attributes, segments, metafiles, 
etc.). 

Some related areas, however, are not considered by GKS, and separate 
standards have been developed. Standardization for graphics interface to 
output devices is proposed in the computer graphics interface (CGI) system. 
Standards for archiving and transporting pictures are gathered in the computer 
graphics metafile (CGM). Methods for real-time graphics are considered in the 
Programmer's Hierarchical Interactive Graphics Standard (PHIGS), another 
ISO standard, of largely and rapidly increasing broadcasting [14]. 

Among its functions, PHIGS allows the user to dynamically edit graphics 
data, manipulate geometrically-related objects, and modify the relationships 
between graphics data. It mainly operates by: 

�9 creating structures, a collection of elements (basic building blocks), which 
specify the information about the graphics objects being created, and 
allows one to draw the output primitives; 

�9 organizing structures in a structure network: hierarchical tree with an 
inheritance capability; and 

�9 posting them to a workstation. 

Complex output primitives include, for example, the creation of 
multffaceted surfaces (quadrilateral mesh, triangle strip) and advanced 
rendering (shading, lighting, invisibility control). 

Besides official international standards, some graphics libraries involved 
in largely widespread commercial software acquired an outstanding 
importance, and became kinds of non-official standards gathering the efforts 
of manufacturers. As an example (particularly in the field of molecular 
modelling) OPEN GL from Silicon Graphics, now licensed to many 
hardware vendors, is supported by the majority of graphics workstations and 
PCs. 
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1.3 GEOMETRICAL TRANSFORMATIONS 

The creation and manipulation of computerized images frequently involves a 
set of geometrical operations to modify the appearance of the display. For 
example, it may be useful to experiment with different viewing positions, so 
that certain parts of the scene are more visible. Sometimes, the size of the 
pictures has to be reduced or magnified according to the regions of interest. In 
animated sequences, the relative location of the objects constituting the scene 
reproduced have to be changed continuously. Other applications directly rely 
on visualization techniques: deriving a 2D image on a monitor  screen from a 
3D scene usually implies several changes in the coordinate systems defining 
the objects or their images. 

Elementary transformations encompass translation, scaling, rotation, etc. 
Since such operations frequently occur in computer-image generation, 
efficient handling methods are needed. Easier handling is attained if these 
transformations carl be formulated to satisfy the following conditions: 

denotation as a single mathematical  entity, and 
concatenation: the successive application of single transformations can be 
expressed as a unique transformation from the starting point A to the final 
transform D" 

T, T~ T3 
A ~ B .~C ~ D  

T 
A ~ D  

1.3.1 Matrix representation and homogeneous coordinates 

For the sake of clarity, we first consider only a 2D space. It is clear that 
elementary transformations such as translation by a vector (Tx, T~), scaling by a 
vector (Sx, S~), and rotation of 0 about the origin, transform the current point 
(X, Y) into a new one (X',Y'), according to the following expressions: 

Initial point Transform 

y Y" 

Translation 

Tx 
T~ 

X ' = X + T x  
Y '=Y+T~ 

Scaling 

S. 
S, 

X '=SxX  
Y'=S,,Y 

Rotation 

0 
measured clockwise 

X' = X cos 0 + Y sin 0 
Y" =-X  sin 0 + Y cos 0 



18 COMPUTER GRAPHICS: AN INTRODUCTION 

r~ 
X 

r~ 

p J 

- ~ P  

. p '  

X 

Y 
A P '  

P 

x 

All these operations (including translationsJ are readily expressed in a more 
convenient matrix form, thanks to the introduction of homogeneous 
coordinates, representing point {X,Y) in the 2D space by the triple {X, Y, 11~: 

P ---P' {X',Y',lJ={X,Y, lJ T 

where T is the transformation matrix expressed as: 

Translation Scaling Rotation 

1 0 0 
0 1 0 

T T 1 
x y 

S 0 0 
x 

0 S 0 
Y 

0 0 1 

cos0 - s i n 0  0 
sin 0 cos 0 0 

0 0 1 

Using this matrix formalism {and here is one of its main advantagesJ 
sequential transformations are easily concatenated. The matrix representing 
the overall transformation is simply the product of the matrices of the 
individual transformations. 

Note that the order of the transformations must  be strictly preserved when 
multiplying matrices. For example: 

P2 = pT 

So: 

P ~ ,1, T, Pl = pT, 

T P, 
,~, T2 P2 = PIT2 =(pT,)T~ 

P2 : P{T'T2 } 

T = Tl T2 

where p, represents the row vector {X,, Y,, 1} associated with point P~. 
Various other elementary transformations - reflection [symmetry) in one of 

the reference axes or in the origin, X or Y shear - can similarly be expressed 
simply by matrices. 

Note that adding a third component to the duple IX, I1) does not weigh down 
the calculations: the third column of the matrices is always 10,0,1) so for any 

In homogeneous coordinates, any point P{X,Y) of the 2D space is represented by the triple 
{[X, IT, D where / {4:0} can be considered as a scale factor. It comes to map the space of ordinary 
coordinates {dimension nl to a space of dimension n+ 1: the space of homogeneous coordinates. 
Conversely, the n space may be considered as a projection of the n + 1 space. These homogeneous 
coordinates are very useful for manipulating graphics in operations such as projections, size 
changes and geometrical transformations. 



GEOMETRICAL TRANSFORMATIONS 19 

2D transformation only the usual (2 • 2)matr ix needs to be stored, the full 
matrix being easily restored simply by attaching the third column. Similarly, 
rather than using the general algorithm for multiplication, one can speed up 
the process, taking into account the nature of the third column, and avoiding 
the evaluation of non-intervening elements. 

With raster systems, some tricks, such as copying blocks (bit block transfer} 
for some simple transformations as translation or 90 ~ rotation, rather than 
carrying out the usual matrix operations, give extended capabilities in, for 
example, animated sequences. 

1.3.2 Inverse transformations 

One sometimes needs to know what initial point a given (transformed) point 
comes from: 

T 
P' (X',Y') ( P (X, Y) 

y -1 

This inverse transformation just corresponds to the inverse matrix T -', as 
can easily be seen: 

from p '=  pT it comes 
p T '  = { p T ) T '  = piTT-') 
i.e. p'T -~ = p 

Such inverse transformations intervene, for instance, to return to an original 
coordinate system, temporarily changed to more easily perform some process. 
Similarly, moving an object in a direction can be treated as moving the 
reference axes in the opposite direction. 

As another example, suppose a polygon is created with a pattern filling it. 
Transforming the polygon also requires transforming the pattern inside. An 
easy way to determine the attributes of a point P' in the new display is then to 
determine to what initial point P, P" corresponds, and to examine the status of 
point P in the pattern table (intensity, grey level, colour attributes). This is 
easy using the concept of inverse transformation. 

1.3.3 3D transformations 

The matrix formalism, presented above in 2D, is easily extended to 3D space. 
The possibility of concatenating sequences of transformations so as to represent 
the result as a product of matrices is, of course, maintained. 

A point (X, Y,Z) is now represented in homogeneous coordinates by {X, Y,Z, 1 ). 
The matrices associated with the more frequent transformations are gathered 
in Table 1.1. Let us note that rotations are now more complex, since the 
rotation axis has to be specified. 
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Table 1.1 Common transformation matrics. 

Translation 

Scaling 
{centre in the origin} 

1 0 0 0 
0 1 0 0 
0 0 1 0 

T T T 1 
x y z 

S 0 0 0 
x 

0 S 0 0 
y 

0 0 S 0 
0 0 0 1 

Rotation: {angles measured 
clockwise when looking 
along the rotation axis 
from its positive part 
towards the origin 

cosO -sinO 0 0 
sinO cosO 0 0 

0 0 1 0 
0 0 0 1 

cosO 0 sinO 0 
0 1 0 0 

-sinO 0 cos O 0 
0 0 0 1 

1 0 0 0 
0 cosO -sinO 0 
0 sinO cosO 0 
0 0 0 1 

x •  Y 

z 

Y 

z 

Y 

1.3.4 Rotation about an arbitrary axis 

Rota t ion  around an axis no t  al igned w i t h  the coordinate  axes can be per formed 
by a sequence  of p r imi t i ve  t rans format ions .  

Given  an axis passing th rough  poin t  {Xo, Yo, Zo) and w i t h  (a,b,c) as direct ion 
cosines,  the  fol lowing sequence  is carried out: 

a Trans la t ion  defining a new reference s y s t e m  w i t h  origin in (Xo, Yo, Zo): 
mat r ix  T. 

b Rota t ion  a round  the  n e w  x and y axes to bring the  un i t  vector  (a,b,c) on to 
the z axis: ma t r i ces  Rx and Ry. 
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c Rota t ion  0 a round the  z axis of the  new coordinate  system" m a t r i x  R0. 

d inverse of step b ~ to r e tu rn  to the  original  axis sys tem.  
e inverse  of step a ! 

So the overall  t r ans fo rma t ion  m a y  be w r i t t e n  as" 

T Rx R~ Ro R; l Rx' T -1 

T __ 

1 0 0 0 
0 1 0 0 
0 0 1 0 

- X o - Y o - Z o  1 

RX 

1 0 0 0 
0 c / v  b / v  0 
0 - b / v  c / v  0 
0 0 0 1 

R y  ~ 

v 0 a 0 
0 1 0 0 

- a O v O  
0 0 0 1 

R 8  "-- 

cos0  - s i n 0  0 0 
s i n 0  cos0  0 0 

0 0 1 0 
0 0 0 1 

where:  
v = (b ~ + c~) �89 

ro ta t ion  about  the  
x axis un t i l  the 
axis of ro ta t ion  is 
in the  xz plane 

COS er = C/V 
sin e~ = - b / v  

s i tua t ion  after the  
Rx ro ta t ion  and ro ta t ion  
un t i l  the  axis of ro ta t ion  
corresponds  to the  z axis 

COS ~ = V 

s i n ~  = a 

z 
( a , b , c )  

c 

(x b y 

x 

(From Newman and Sproull [4] with permission). 
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2 Computer graphics: towards 
realistic images 
2.1 REPRESENTATION OF 3D OBJECTS 

2.1.1 Polyhedra 
2.1.2 Plane equation 
2.1.3 Curved surfaces 
2.1.4 Splines and Bezier curves and surfaces 
2.1.50ctree structure 
2.1.6 Solid constructive geometry 

2.2 VIEWING, WINDOWING AND CLIPPING 
2.2.1 Projection 
2.2.2 Viewing transformation 
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2.2.4 2D clipping 

2.3 SEGMENTS 

2.4 HIDDEN LINES AND SURFACES REMOVAL 
2.4.1 Preliminary treatment: back faces elimination 
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2.4.3 Scan line method 
2.4.4 Priority algorithms: painter's algorithm 
2.4.5 Space partition 
2.4.6 Warnock's algorithm 
2.4.70ctree method 
2.4.8 Hidden line algorithms 
2.4.9 Treatment of curved surfaces 
2.4.10 Ray tracing 
2.4.11 Efficiency 

2.5 RENDERING 
2.5.1 Shading 
2.5.2 Gouraud and Phong smooth shading of polyhedra 
2.5.3 Transparency 
2.5.4 Ray tracing 
2.5.5 Shadows and special effects 
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Computer generated representation of 3D objects (here molecular features} 
basically involves a series of operations not so different to those needed when 
taking a photograph of a scene in the real world. Indeed, in the generation of 
synthetic images, the computer has often been compared to a "synthetic 
camera". 

First the photographer has to select his location with respect to the scene 
and direction of vision. This determines what part of the scene will be 
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represented (that appearing in the viewfinder). An image is formed on the 
planar surface of the film. Then the development generates the print. 
Similarly, to create computerized images, we first have to select a viewpoint, a 
viewing direction and fix a window demarcating what will be reproduced. 
Finally, the drawing will be displayed on a given area of the screen: the 
viewport. This will be carried out using graphics functions (output primitives) 
to draw line segments, curves or paint filled areas. 

Before examining these viewing operations and the basic graphics functions, 
we first introduce the most common representations used in computer 
graphics to reproduce objects of the 3D space. Owing to some specific features 
of the chemical "objects", either defined as real bodies (the usual wood or 
plastic molecular mode l s )o r  as more conceptual, abstract entities (for 
displaying electronic properties), we will deal in more detail with the 
representation of molecular shapes in a later chapter. 

2.1 REPRESENTATION OF 3D OBJECTS 

Solid objects are often represented by shaping their outer surface like a skin 
around them: this is sur[ace modelling, very popular for applications involving 
free form curves. In raster systems, surfaces are commonly described as 
polyhedra, limited by a network of polygon-shaped faces [1 ]. These polyhedra 
either exactly represent the surface or are selected to give a good 
approximation of complex objects, provided the number of faces is sufficient. 
In calligraphic displays, complex objects may be defined from a mesh of 
polygonal surface patches: succesive sections by sets of parallel planes along 
orthogonal directions give packets of contours {cross section outlines} leading 
to "chicken wire" models [2]. 

Such serial sectioning methods can also be useful in raster systems to derive 
a network of facets limiting a solid, thanks to triangulation [3]. Some 
procedures have been proposed for triangulation between successive contours, 
or for analytically defined molecular surfaces [4-6] {Figure 2.11. 

Other techniques involve soEd geometry [7-9], which combines simple 
shapes through logical operations {union, intersection). Discrete modelling 
assembles cells [10] to represent the body of the object. Rather than using a set 
of similar elementary cells, octree encoding often gives a very convenient data 
structure to make easier this edification [11,12] {Figure 2.2}. 

Figure 2.1 Representation of a solid by a planar faced polyhedron or by a mesh of 
contour outlines. 
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Figure 2.2 Discrete modelling: representation of an object by a set of elementary cells 
(volume elements or voxels)(from Kronlof and Tamminen with permission [10]). 

2.1.1 Polyhedra 

Polygons defining the faces are identified by the coordinates of the vertices and 
the sequential order to join them. For easier display, it may be efficient to 
organize the data in tables containing the geometrical characteristics and the 
rendering attributes (colour, shading, etc.). For instance, one table may contain 
the coordinates of the vertices, another the list of the edges with their end 
points, and a third the polygons with their constituting edges (Figure 2.3). 

A 

5 1 

D 
B 

C 

Figure 2.3 Identification of a polyhedron. 

Vertices 

B Xs YB ZB 
C Xc Yc Zc 

Edges 

3 C D 
4 B D 
5 A D 

Faces 

A 
A 

D 
C 

2.1.2 Plane equation 

The plane equation for a face can be written: 

a X + b Y + c Z + d = O  (1) 
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Coefficients a,b,c,d are readily obtained from three non-colinear vertices by 
writing that their coordinates (X,Y~,ZI) satisfy equation (1) and solving the 
system obtained. It is easily checked that these coefficients can be derived 
from the determinant  A: 

X, Y., Z. 

X, Y, Z i 

Xk Yk Z~ 

=A 

So, d = -A and a,b,c are equal to the determinants formed by replacing in A, 
respectively, the first, second or third column elements by 1. Note also that 
a,b,c are the components of a vector normal to the face. Plane equation and 
normal coefficients a,b,c will be used later for hidden part removal or shading 
problems. 

2.1.3 Curved surfaces 

Curved surfaces may be approximated by a polyhedron, with a sufficient 
number  of planar faces. Otherwise, one can use a set of curved paths to define 
the surface. A parametric representation is often the most convenient when an 
analytical form is available. 

So a spherical surface can be described with the equations: 

X = r s i n  u cos v 
Y = r sin u sin v 
Z = lr COS U 

where r = radius and u and v specify the azimuth and longitude of the current 
point (Figure 2.4). 

m m 
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Figure 2.4 Sphere described as a set of curved paths, u - constant, v - constant. 
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Complex situations may require the joining of curve segments. Smooth 
transitions are obtained ensuring continuity conditions of increasing order: the 
curves meet at the junction point (zero order continuity), with the same 
tangent direction (first order)and same curvature (second order)(Figure 2.5). 

A ~ P  

Order 0 1 2 

Figure 2.5 Curve junction at various degrees of continuity (from Newman and Sproull 
with permission [16]). 

2.1.4 Splines and Bezier curves and surfaces 

We will not develop these points, since until now such methods have not been 
widely used in molecular graphics, whereas they are largely widespread in 
computer assisted design to interactively adjust the shape of a curve according 
to the user's wishes. 

The principle is to define a curve thanks to a sequence of polynomial 
functions, formed from the coordinates of user-defined control points.  These 
control points monitor the general shape of the curve, and allow for modifying 
it interactively [13-15]: 

(a) Bezier curve 

X{u) 
Current point P(u) Y(u) 

ZIul 

VIul -  p,B ,olul O u l 
i=o 

B,,~(u) = C(n,i)u'(1- u) ~-~ 
C(n,i) = {n!) / i!(n - i)! 

is defined thanks 
to In + 1) control 
points p~ 

A Bezier curve always passes through the end control points and lies within 
the convex hull of the control points (Figure 2.61. 
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P2 

P0 

Figure 2.6 Bezier curve defined by four control points (order n = 3) (from Newman and 
Sproull with permission [16]). 

(b) B-splines 

B-spines (order k -  1)" current  point P(u) is defined from the n + 1 control point 
p ,  (with i varying from 0 to n)(Figure 2.7): 

P(u) = ~ p,N,, k (u) with  0 < u < n -  k + 2 
z::O 

N,I(U, = {10 ffu,<_u<u,+, 
' o therwise 

(u- u,)N,,k_,(u ) (u,§ k - u)N,§ ) 
N, ,~(u)  = + 

U i , k _  l - -  U i Uz§  - -  U m 

I ~ convent ion ~ = 0 

breakpoints  u~ define n + k subintervals  for u 

u, = 0 if j < k 

breakpoints  u, j -  k + 1 if k < j < n 

O < j < n + k  n - k + 2  i f j > n  

k=3 

k=5 

Figure 2.7 B-splines of order 2 and 4, from 6 control points (from Newman and Sproull 
with permission [16]). 
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As seen with other curves (for instance, circles to represent a sphere), sets of 
such splines or Bezier functions (in a biparametric form) can be used to 
generate curved surfaces defined through control points (Figure 2.8). 

Figure 2.8 Bezier surface created by joining two Bezier patches at a boundary 
(indicated by arrows). First order continuity is ensured by the choice of the control 
points (from Newman and Sproull with permission [16]). 

2 . 1 . 5 0 c t r e e  structure 

Solid objects can be represented as being formed by the summation of identical 
small elementary volumes (typically small cubes) called "voxels" (volume 
elements) contained in the object. This is the principle of discrete solid 
modelling, largely used to represent free-form objects and also in medical 
applications {"computer assisted tomography")[10]. 

Rather than using any arbitrary, but fixed, resolution, the octree method 
prefers a hierarchical-tree organization through recursive subdivision. The 
data structure adopted takes advantage of the space-coherence of the object. It 
reduces memory space requirements and allows for easy downstream 
treatments (hidden part removal, logical operations, etc.}. 

An octree is created by recursively dividing space into eight octants. Each 
node (which corresponds to a region of space) is assigned eight data elements 
for storing the characteristics of the eight octants generated. If an octant is 
homogeneous (same colour, location either totally internal or external to the 
object} its attributes are encoded into the corresponding data element. 
Otherwise, the subdivision is continued until each region of space becomes 
homogeneous. A system of pointers ensures the correspondence between the 
divided octant and the resulting next nodes in the octree structure. 
Algorithms have been proposed to built an octree structure for objects defined 
as a mesh of polygons or resulting from solid constructive geometry (this can 
be performed by testing, octant by octant, a 3D box containing the object} 
(Figure 2.9). 
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Figure 2.9 Octree encoding of an object. (a) Subdivision into octants; (b)object; 
(c) octree; (d} data elements for the octree nodes. 

For the representation of an object on a video screen, a projection is made 
onto a plane, leading to a similar quadtree structure: each node now 
corresponds to four data elements. The quadtree structure is then mapped on 
to the frame buffer {Figure 2.10). 

2 . 1 . 6  S o l i d  c o n s t r u c t i v e  g e o m e t r y  

Objects are generated by combining simpler shapes, considered as primitives, 
through Boolean operations of union, intersection and difference. For easy 
welding and cutting, a convenient data structure has been proposed by Wyvill 
and Kunii [7]. It is provided by a directed acyclic graph, where each vertex 
represents a primitive or a combination of them. A directed acyclic graph is 
used instead of a tree structure, since the same subobject can be used several 
times in the description. Data processing is then performed thanks to a 
modified octree {Figure 2.11). 

Such an approach may be interesting in chemistry, since the representation 
of usual space filling CPK {Carey, Pauling, Kohan) or ball and stick models 
only needs a few simple primitives: spheres {for atoms}, cylinders (for bonds}, 
etc. Note also that, for building such elementary shapes, one can take 
advantage of the existing symmetry, and generate the whole shape by 
rotational or translational sweeping of a simpler figure {great circle or 
generatrix, for instance} through the appropriate region of space. 
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Figure 2.10 Resulting quadtrees for viewing from x or y directions. 

I ) 
Sphere Cylinder 

Figure 2.11 Solid constructive geometry: building a molecular model from simple 
primitives (sphere and cylinder)(from Wyvill and Kunii with permission [7]). 

2.2 VIEWING, WINDOWING AND CLIPPING 

Mapping a three dimensional scene on a planar viewing surface involves 
several operations: projection, change of the coordinate system, clipping, etc., 
usually gathered within the genetic term of viewing operations. We briefly 
examine them in this section. 
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2.2.1 Projection 

To get a planar representation of a scene on a screen, the main operation 
required is obviously projection. We only consider here parallel projection. 
Points of the object are projected along parallel lines, so that  the relative 
dimensions are mainta ined (Figure 2.12). The projection is said to be ortho- 
graphic when the projection lines are perpendicular to the projection plane 
(otherwise it is an oblique projection). 

Object ~~-~..~_~. 

Projection Plane 

Figure 2.12 Oblique parallel projection. 

The transformation matrix for an oblique projection along a direction 
defined by its director cosines (a,b,c)is (see also Figure 2.13): 

1 0 0 0 
0 1 0 0 

- a l c  - b / c  0 0 
0 0 0 1 

(a,b,c) 

(x,y,z) y' (x',y',z') 
Q 

~ x I 

Figure 2.13 Transformation matrix for an oblique projection (adapted from Hearn and 
Baker [1]*) *reference from Chapter 1. 

Perspective projection, where projection lines converge towards a common 
centre, leads to more realistic pictures, s inced i s t an t  objects appear smaller, 
but as a counterpart,  the relative dimensions of objects are not maintained. 

2.2.2 Viewing transformation 

To locate on the display screen the projections of the objects consti tuting the 
scene, we first have to convert their position from the world coordinate- 



VIEWING, WINDOWING AND CLIPPING 33 

system in which they are defined to a viewing coordinate system (eye 
coordinate system): its origin is the viewpoint and its z axis corresponds to the 
direction of view {Figure 2.14). This is performed using transformation 
matrices (see p 17). Let us note that the eye coordinate-system is generally 
chosen as left handed (the z axis pointing forward from the viewpoint), 
whereas the world coordinate system is right-handed. So, at some step z must  
be changed to -z ' .  

View volume 
~ ~ ~  Window 

~ ~ ~ ' ~  View plane 

I ~ f ~ ~ i e w i n g  c~176 sY stem 
.x.x.x~ ~ view point 

World coordinates 
f~.View port (Device normalized 

"0.1 " - l  ,~]~T,TI-~~.il i /  coordinate system) 

Figure 2.14 
displayed. 

Various coordinate systems. Only objects within the view volume are 

2.2.3 Clipping 

On a photograph, only that part of the scene observed in the viewfinder will 
appear on the print. Similarly, that part displayed on the screen corresponds to 
a window in the view plane. This window, with its projection lines, defines a 
viewing volume which limits the portion of the world the viewer can see. 
Futhermore, this volume can be reduced by near and far planes: this allows for 
eliminating objects far away from the viewer or near objects that can mask 
those located behind (Figure 2.15). In molecular modelling, for example, we 
can thus eliminate the nearest parts of a molecular surface to preserve some 
view of the molecular framework. 

1 A trick (among others) to remember the orientation of axes in a left-handed system is: for the 
left hand, if the thumb and the first finger align with the x and y directions, the second finger 
points towards the z direction. 
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View volume 

. . . . . .  ~ W  
Rear plane 

Figure 2.15 The view volume can be limited by front and rear planes. 

We have now to discard all line segments (or parts of them} located outside 
the viewing volume before performing the projection on the view plane 
{Figure 2.16). 

A/ 
Be" 

/ 
Figure 2.16 3D clipping. Only the line segment inside the view volume (AB)will be 
visible (and is projected as ab on the window}. 

This 3D clipping operation can be seen as an extension of the two 
dimensional clipping operations {see section 2.2.4}. Basically, one examines the 
position of each line segment of the object successively with respect to each 
boundary plane limiting the viewing volume: ff the two end points of the 
segment are on the inside face of the current boundary plane, the hall segment 
is maintained. If the two points are outside it is discarded. If the segment 
intersects the boundary plane, one calculates the coordinate of the intersection 
point to determine that part of the segment that wiU be saved {Figure 2.17]. 

B 
E 

Z 

Figure 2.17 Clipping by the upper plane of the view volume: CD and FI saved, AB and 
IE discarded. 

After the clipping operation, the window is mapped on a projection viewport 
(rectangular) part of the screen, where the window's content will be 
represented. As stressed by Newman and Sproull [16]: "the window defines 
what we want to display, the viewport specifies where on the screen to put it". 
This corresponds to the "windowing transformation." 



VIEWING, WINDOWING AND CLIPPING 3 5  

To allow for using varied display devices within a same system, it is more 
convenient to describe the viewport with normalized device coordinates 
(varying from 0 to 1 for the full screen area). Finally, the normalized 
coordinates of the displayed features are converted to device coordinates for 
specific display on the monitor used to get the picture on screen. For the sake 
of efficiency, actual implementation of this clipping treatment prefers a 
somewhat differing scheme: the viewing volume (in the eye coordinate 
system) is transformed in a viewbox (in a normalized screen coordinate 
system). Clipping is more easily performed at this step. Then data can be 
transformed into device (screen) coordinates for display. They also have the 
appropriate form to be passed to hidden-part removal routines for more 
realistic pictures. 

With VLSI (Very Large Scale Integration)technology, viewing operations can 
be hardware implemented using a pipeline of chips performing trans- 
formations, projections, clipping and conversion to device coordinates. 

Let us also note that the geometrical transformations the user wishes to 
apply can be performed either before or after the viewing operations: when 
intervening before, on some of the segments defining the scene, they allow one 
to modify the relative location of some objects. If applied after, they only 
change the X,Y coordinates in the screen system: the objects' location on the 
screen is modified, but the angle along which they are seen is not changed. 

2.2.4 2D clipping 

To discuss the clipping operations in more depth, we prefer, for the sake of 
clarity, to present the approaches proposed in 2D graphics, since they give a 
good introduction to the processes used in 3D. 

As previously said, clipping eliminates parts of the scene (in 2D the "scene" 
is a picture defined in some world coordinate systeml which will not be repre- 
sented on the display screen, i.e. points of the picture outside the window (one 
can alternatively eliminate screen points outside the viewport). An essential 
part of clipping operations corresponds to line clipping, since line segments are 
used to define polygons limiting complex objects either in raster or calligraphic 
graphics systems. Line clipping is performed by examining if the end points are 
within or external to the window (respectively the viewport), as indicated for 
3D clipping. An essential element has been proposed by Cohen and Sutherland 
[17]. They suggest defining the location of each line end point with respect to 
the window using a four digit code: so the first (left) bit is set to 1 if the point 
is above the window (otherwise zero). The bits (from left to right) shown in 
Figure 2.18, when set to 1, similarly specify a location below, right or left. 

This code allows for a fast comparison of line end-points and window 
boundaries, through examination of the relevant bits and logical operations. So 
it appears to be very efficient for determination of the lines to be immediately 
discarded as totally external to the window, or saved as completely inside. 
Then, the lines intersecting the window edges are examined to determine 
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0001 0000 O010 

0101 0100 0110 

Figure 2.18 Binary codes allow for locating line end-points in the nine regions defined 
by the window edges. The window corresponds to the area encoded 0000. 

~ B 

A ~ 

G 

Figure 2.19 Only segments CD, IF, JK have to be saved. 

what part will be maintained (Figure 2.19). Other algorithms have also been 
proposed, using midpoint subdivision of intersecting lines [18] or working on 
parametric equations such as that of Liang and Barsky [19, 19a]. 

Polygons can be clipped with these algorithms by successively treating all 
their edges {Figure 2.20}. The outline created is no longer closed, but this 
causes no problem for line drawings generated from a calligraphic device. On 
the contrary, when polygons limit filled areas, we need clipping to produce 
closed outlines (Figure 2.21}. Sutherland and Hodgman [20] proposed clipping 
the polygon against one of the four window edges, then clipping the resulting 
shape against another edge, and so on. The algorithm operates on the vertices 
defining the polygon: each vertex is in turn compared to the window 
boundaries. If the edge between two successive vertices crosses a boundary, the 
intersection point becomes a new vertex, added to the output polygon, and the 
{old} external vertex is discarded. 

To limit storage requirements, a point (original vertex or intersection) is 
saved only after comparison with the four window boundaries. At the end, a 
closing routine is applied for the first and last point clipped against each 
window edge. Special methods have been proposed for non convex polygons 
[~.01. 

/ '  / 

Figure 2.20 Clipping hollow polygons (heavy lines) leads to non-closed outputs. 
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A 

C 

f 9 

Figure 2.21 Clipping a filled polygon against the window edges. Lower case letters 
correspond to the vertices or intersections saved (starting from A). 

Blanking 

Complementary to clipping, which erases objects outside the window, 
blanking allows for erasing parts of the display which are contained within a 
selected window area. This may be useful to superimpose pictures, to add 
labels, etc. 

2.3 SEGMENTS 

For some applications it may be interesting to modify only part of a complex 
image. Such situations may occur in the display of animated sequences 
representing dynamic processes, but also when the chemist, in interactive 
sessions, is looking for a better fit between two interacting molecules, for 
instance a small drug or ligand binding to a large biomolecule (protein, part of 
a receptor, etc.). Such selective modifications are made easier if the various 
objects or groups of objects to be moved are defined as separate modules. This 
is th.e role of segments. 

A segment, considered as a part of an overall display, gathers a set of 
instructions of the display file representing graphical primitives and which can 
be manipulated as a single unit. Segments are given attributes monitoring: 

�9 visibility, 
�9 geometric transformations (to change size, position), and 
�9 priority {in their order of display, mainly for raster devices). 

The display file must be organized so as to reflect and take advantage of this 
subpicture structure. Manipulation of segmented display files can be 
efficiently carried out with a minimal set of functions, not so far in principle 
from those used in handling sequential disk files: opening, closing, deleting. 
An important feature is the ability to make segments visible or not. In a 
calligraphic system, this is obtained by adding the segment to the refresh cycle 
for its display or removing it for erasing. In raster systems, an internal data 
structure is organized ("pseudo display f i le")which allows for updating the 
frame buffer according to the segment attributes. 



38 COMPUTER GRAPHICS: TOWARDS REALISTIC IMAGES 

The display file may be organized by gathering the properties of segments in 
a linear array or using a linked list: for a given segment, instructions are not 
stored in order but a pointer gives access to the successive graphical 
instructions to execute. Storage through fixed-length blocks is also possible. 
Each segment is identified by an integer. To handle segments easily, their main 
attributes are gathered in a segment directory (address, length, visibility), or 
can be found in headers located at the beginning of each segment block and 
accessed through pointers. 

2.4 HIDDEN LINES AND SURFACES REMOVAL 

Removal of hidden parts is essential to produce realistic-looking images. In 
real life, only front parts of objects are attainable by light and can therefore be 
visible, the bulk of opaque material hiding on the back faces. On the contrary, 
in computer generated images, all parts of the objects are displayed with no 
thought as to how the real objects would appear. Adapted algorithms are 
therefore necessary to maintain only those lines or volumes which are visible 
for a given observer position. 

The same problem occurs in wire frame drawings: faces of objects are 
replaced by their bounding contours, but it is difficult from these wire outlines 
to judge which parts or lines lie in front and which belong to the back. 
Suppressing non-visible lines removes the ambiguity, as can be seen in the 
scheme shown in Figure 2.22. 

Figure 2.22 Without hidden line removal, the same wire frame drawing may be inter- 
preted as a view from down left (A) or top right (B){from Rogers with permission [2]*}. 
"Reference from Chapter 1. 

As an essential part in producing realistic images, hidden part removal 
problems have received continual interest and prompted numerous 
algorithms. However, no single answer is now proposed and has even to be 
expected: the efficiency of the methods proposed depend upon the complexity 
of the scene being represented or the image being displayed, and also on the 
goals in mind. Handling highly interactive images needs different 
requirements than producing still-life looking shaded surfaces. 
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Despite a great diversity, some general features may, however, be stressed: 

�9 Hidden part removal relies on a geometrical sorting of what is near the 
observer, and what is further away (the order in which depth and lateral 
sorting are carried out may vary, but is not of prime importance). 

�9 Coherence: the fact that a scene generally exhibits locally some regularity 
is capitalized at various degrees to limit the calculations and speed up the 
process. For reviews, see, for instance, Sutherland et al. [21] and Clark [22]. 

Algorithms work either on the object space (on the real location of the 
objects in the scene), or in the image space (looking only at what must appear 
on the screen). These later applications are more clearly relevant to raster 
devices (examining each pixel of the image) and are largely dedicated to 
hidden surface removal, while the former applications can also treat hidden 
lines for calligraphic pictures. When working in the object space, the 
computer cost increases with the number of objects, whereas for image space 
methods it depends upon the complexity of the image. Note also that image 
space algorithms are implemented in the screen coordinate and carried out 
with the (limited) precision of the screen. Large zooming on such images may 
result in some shortcomings in the visual result. On the contrary, object 
space algorithms (working in the space where objects are defined) can be 
carried out with a high precision so that images can be enlarged without any 
problems. 

Although algorithms working on curved surfaces have been proposed (see 
below), we mainly consider here objects approximated by polyhedra, i.e. 
volumes limited by planar faces (polygons). Treatment is easier for convex 
polygons: if it is not the case it is still possible to arrive at convex shapes by 
subdivision of the original faces. 

2.4.1 Preliminary treatment: back face elimination 

Hidden part removal is an onerous task, and any method allowing for limiting 
the calculations or speeding up the process is of great interest. Back faces of the 
object {those situated at the rear with respect to the observer} are obviously 
non-visible, and can be safely eliminated to limit the number of faces 
submitted to further treatment. The process gives only partial solutions: faces 
potentially visible. In fact, front faces may be visible but can also be obscured 
by other parts of the object {for non-convex shapesJ, or by other objects of the 
scene. However, such pre-processing can save about 50% of the computer time 
required, and is therefore widely used. 

The determination of front and back faces is easily performed through the 
polyhedron approximation of the object. Planar equations of the limiting faces 
can be directly used, otherwise the normals to the faces are considered 
(normals are also used in shading operationsl. 

Let us first consider the planar polygonal faces limiting a polyhedral object. 
We can distinguish for each plane a side facing the interior part of the object, 
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with the other looking outside. We shall call these faces internal or external. 
For a face of equation 

a X + b Y + c Z + d = O  

the expression 

S(P') = aX' + bY" + cZ' + d 

is zero for any point P' (X', Y', Z') located in the plane: for other points (not in 
the plane), its value is non-zero and changes sign according to the side of the 
plane on which the point is lying. 

Remark that for plane: 

a X + b Y + c Z + d = O  

coefficients a,b,c correspond to the direction of a vector (generally a non-unit 
vector) perpendicular to the plane ("normal" to the plane). We adopt the 
convention that the plane is specified by three vertices described according to 
a counterclockwise motion when viewing the outer side of the face, in a right- 
handed system (or CW in a left-handed one). Recall that in a plane a polygon is 
described counterclockwise if for three successive edges Pi, Pj, Pk the third 
point Pk is always on the left side of the oriented direction Pi, Pj. 

Given such three points: 

P, (x,,v,,z,), 

a - -  

1 Y, Z, 
1 Y ~  Z2 
1 Y ~ Z ~  

b 
X, 1 Z, 
X~ I Z~ 

X3 1 Z3 
C - -  

X, Y, 1 

X 2 Y ~ I  

X 3 Y ~ I  

d ~ m 

X, I1, Z, 
x r,G 

vector (a,b,c) is normal to the plane and points from inside to outside. 
In a right-handed system (viewing direction along negative z axis), normal 

has component c along the z axis. If c is negative, it means that the normal 
points away from the viewing position: the plane is a back face. Similarly, in a 
left-handed system (viewing along positive z axis), with points Pi described 
clockwise, back faces correspond to c>0 (Figure 2.24). 

As to the position of point P' by respect to plane aX + bY + cZ + d = 0, with 
the convention adopted for deriving the equation of the plane, it comes that 
expression S(P')= aX" + bY" + cZ' + d is positive for a point situated on the 
external side of the face. 

Such a simple test in fact implies that the coefficients a,b. . ,  are given a 
correct and fixed sign (as just indicated above). It is easy to check the 
correctness of these signs by testing the value of S for a point with a well 
known position with respect to the object faces. Otherwise coefficients a,b. . .  
have to be multiplied by-1 .  

In a right-handed system, the viewing direction is along the negative z axis. 
Let us consider the sign of S for point (0,0,-oo), at infinity along the viewing 
direction. If S is positive (that is in fact if c is negative), it means that the point 
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at infinity along the negative z axis is on the external side of the face. 
Therefore, for the observer, the plane is a back face, hidden by the bulk of the 
object. Similarly, when working in a left-handed system (viewing direction 
along positive z axis) a back face corresponds to a positive c coefficient. 

Let us note that giving a sign to the coefficients a,b,.., means that it is not 
equivalent to write for instance a plane equation: 

z + l = 0  or - z - l = 0  

In a right-handed system, the first case (c > 0)would  correspond to a front 
face (with origin on the external side}, the second (c > 0) indicates a back face 
(with the origin on the internal side). See Figure 2.23. 

An equivalent formulation considers two adjacent (non-colinear)edges 
which meet at a convex vertex and are described counterclockwise (in a right- 
handed system). Their vector cross product yields a vector directed towards the 
external side, provided the two edges make a convex angle. This face is visible 

, y 

vi 

Y 

Viewing 
direction 

X 

Z 

F i g u r e  2.23 Back face elimination (adapted from Hearn and Baker [1]*). *Reference 
from Chapter 1. 
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Viewing 
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J 

Figure 2.24 Normal to a face. The face is described as counterclockwise when viewing 
the outer side of the face. Normal points towards the external side (the axis system is 
right-handed). Alternatively, the normal direction can be determined from the cross 
product of vectors AB and BC meeting at a convex vertex (B} (adapted from Heam and 
Baker [ 1 l* ). * Reference from Chapter I. 

if the normal points towards the viewer {this can be determined by evaluating 
the dot product of the normal with the direction of vision, or more easily, 
looking at its z component for an observation point at infinity on the negative 
z axis, as in the preceding method}. 

To avoid searching for adjacent edges with a convex angle, another method 
considers only sums over all vertices. Quantities a',b',c', calculated as 
indicated below, are proportional to the normal coefficients {a,b,c}: 

a' = Z {Y, - Y, XZ, + Z,) 1 
b ' =  z (z, - z , ) (x ,  + x , )  

c'= Z (X, - X,)(Y, + Y, J J 

w i t h ] = l  f o r / = n  
otherwise ] = i + 1 

2.4.2 z-buffer (depth buffer) 

The z-buffer method [23] is widely used owing to its simplicity to implement 
and its good performance. It works in the screen coordinate system lafter 
clipping and transformations]. The principle is to give each pixel of the frame 
buffer the colour of the surface element closest to the viewer thanks to a 
geometrical sorting along the z axis. The z-buffer is made up of two arrays with 
an entry for each pixel (X, Y}: intensity and depth (Z). The buffer is first cleared 
with the background colour. Then polygons are entered one by one by the 
display file interpreter {scan conversion algorithm)[Figure 2.25). The depth of 
the current point treated is compared to the depth of the point already stored 
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s, 

Figure 2.25 Pixel (X,Y) is given the colour of the nearest surface ($2). 

in the buffer. If the current point is in front, the buffer is updated with this new 
Z value; otherwise (point behind the point stored) it is ignored and the older Z 
value is maintained. Calculations may be accelerated using interpolation or 
incremental routines through the scan line. 

The main drawbacks of the z-buffer method are the execution t ime and the 
cost in memory: a second buffer is required in addition to the refresh buffer, 
and each pixel has to be examined: this amounts to over one million values for 
a 1024 x 1024 resolution. In fact, the execution time depends upon the 
resolution of the screen and is proportional to the number of polygons 
(whereas other methods depend upon the square of this number): so, although 
relatively slow for treating a few polygons, it is more competitive for complex 
scenes where many faces are to be considered. As to the need for a large 
memory, this can be avoided by processing only one section of the scene at a 
time, or by using the derived scan l ine  method. 

2.4.3 Scan line method 

In this approach, the scan line z-buffer [24], the z-buffer is l imited to only one 
line (the current scan line)(Figure 2.26). This comes to process all polygons for 
one scan line rather than processing all the scan lines for one polygon (as in the 
usual z-buffer). The method is an extension of the scan line algorithm for filling 
polygon interiors, but now working to multiple surfaces. The method is greatly 
accelerated by treating not individual pixels but spans, i.e. sequences of pixels 
on a scan line lying within the same polygon: only end points or intersection 
points (when polygons interpenetrate)need to be considered [25-27]. 

This scan line approach is well suited to hardware realization. It is also 
adapted to downstream rendering treatments such as giving the picture grey 
shade depending upon z to get highly realistic displays. 

2.4.4 Priority algorithms: painter's algorithm 

This class of method [28] relies first on priority relationships on the depth 
between polygons in the object space, the X Y  calculations and scan 
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 n,,Oe 

S c r o e  x 

(a) 

Figure 2.26 (a) Scan-line z-buffer; (b) projection of spans within polygons S, and $2 in 
the scan line plane (from Newman and Sproull with permission [16]). 

conversion being performed afterwards in the image space {starting with the 
surface of greatest depth}. The term painter's algorithm suggests some analogy 
with the way in which a painting is created: first the background is painted, 
then the more distant objects are added, and finally, the nearer objects are 
represented. New paint covers the background ones, and only the newest 
layers are visible. 

Polygons are arranged in a priority order based on their depth (those nearer 
the viewer having a higher priority}. Then they are "painted" on to the frame 
buffer {through scan conversion} starting with the furthest polygons. Rather 
than a pixel-by-pixel comparison, as in the z-buffer, visibility is calculated 
using geometrical criteria, taking advantage of the coherence of polygons in 
depth. 

The method looks very simple, but only at first glance, since each polygon 
cannot be entered independently, and for each one, intersections with all other 
polygons are to be investigated. This is necessary to determine which are 
situated behind the others, and to fix the order of their display. 

Simple tests can greatly help in examining the key relation: "Is polygon P, 
obscuring polygon P,?" This is the MINIMAX (or boxing) test: clearly, two 
polygons cannot intersect if boxes just containing them do not overlap (Figure 

This is immediately determined by examination of the extreme values of X 
and Y. If the test is inconclusive, it does not mean that the polygons 
interpenetrate. A more refined test is necessary: for instance, comparison 
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Figure 2.27 Depth test indicates that S~ and $2 cannot overlap. The test is inconclusive 
for S~ and $3, but a test on X rules out any overlap between them (adapted from Hearn 
and Baker [1 ]*). *Reference from Chapter 1. 

between an edge of one polygon to all the other edges of the other one. 
Sequences of increasing complexity have been proposed: 

�9 minimax  test in Z, 
�9 minimax  test in XY, 
�9 comparison of all vertices of P, with  respect to the plane of P,, 
�9 same test (vertices of P, plane of P,), 
�9 full overlap test in XY. 

Other priority algorithms have been proposed, such as the Encarnacao 
method [29]: all faces are first pre-processed and decomposed to triangles. This 
minimizes  storage requirements  and execution time, and also avoids trouble 
occurring with non-convex polygons. Concave structures can thus be treated 
and cyclic overlap problems solved (Figure 2.28). 

2.4.5 Space partition 

Ordering polygons in priority algorithms (such as the p a i n t e r ' s ) m a y  take 
advantage of space parti t ion techniques. Planes are selected so as to separate 
clusters of polygons, but not to intersect any face wi thin  a cluster. Once 

N 

0 

Figure 2.28 Considering separately polygons USVW and WVT allows for treating 
alternate visibility. 
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these groups are formed, sorting is faster (ordering between clusters is 
straightforward and within a cluster priority is more readily determined 
because a few faces are considered). Interestingly, this first classification into 
clusters is maintained when the position of the observer changes. So, if 
wanted, a modification of the viewpoint can be allowed. This would appear 
attractive in some animat ion applications [30]. 

Another approach [31] to order polygons first compares each vertex of one 
polygon against the plane of other polygons: if the planes intersect, the polygon 
is split in two. Two groups are constituted: one for the faces in front, the other 
with faces behind the current polygon. For each subgroup the separation is 
repeated, choosing one polygon to fix the new comparison plane, and so on until  
all polygons have been sorted. Results appear as a binary tree where nodes 
represent polygons: one branch gathers the front faces, the other the faces behind. 

2.4.6 Warnock's algorithm 

Basically, the main idea of the area subd i v i s i on  m e t h o d s  is that  frequently 
parts of a scene or landscape are globally immediate ly  analysed, whereas some 
elements  need a more refined description. Let us consider, for instance, the 
case of a tree in a large meadow. The eye will get a quick perception of the 
stretch of the meadow, whereas it will focus more at tention on the tree to get 
more details about its branches, and then the leaves on them. In terms of 
computer  graphics, as the scope of interest becomes narrower, more precision 
must  be sought. But some advantages (in priority a lgor i thms)can  be gained 
from area coherence within polygons. It is therefore easier to deal with areas 
representing parts of a single surface. 

In the Warnock's method [32, 32a], working in the image space, the screen is 
recursively divided within smaller windows. A window bearing one or no 
polygons is easy to solve: if there is no face within the window, this is given the 
colour of the background. If a face covers the window entirely, it is filled with 
the corresponding colour. Otherwise, this window is subdivided into four 
smaller parts unti l  a window that is easy to solve is found, or the pixel size is 
reached (Figure 2.29). 

For this method we need a test identifying clearly whether  the window 
corresponds to a single surface or is still too complex. A classification is made 
between polygons not overlapping the window ("disjoint polygons"), polygons 
completely surrounding the window ("surrounder") or falling wholly 
("interior") or partly ("intersector po lygons")wi th in  the window. The main 
step is the t rea tment  of surrounders. Polygons behind a surrounder have to be 
eliminated. This is carried out by first comparing the Z values (Z m i n i m u m  of 
the polygon, Z m a x i m u m  of the surrounder). 

The recursive character of the subdivision allows for a faster traversal of the 
model. So, a polygon disjoint to a window is disjoint to all the subwindows 
created thereafter, and does not have to be considered. In fact, this method 
seems to be the first presentation of a data structure not so far from the 
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Figure 2.29 Windows are subdivided until they are easy to solve (the shadowed 
windows need no further subdivision). Not all the subdivisions necessary to treat the 
whole picture are indicated. 

quadtree technique. The computer t ime varies roughly with the complexity of 
the display, and not wi th  the complexity of the scene. 

Rather that  subdividing the window into four parts, as an alternative 
solution one can use boundaries of polygons to partition the screen [33]. 

2.4.70ctree method 

Hidden surface removal is fast and simple when an octree structure is used for 
encoding objects: octree nodes are projected onto the viewing surface in a front 
to back order, creating a quadtree of visible areas {Figure 2.30). 

2.4.8 Hidden line algorithms 

Wire frame objects are defined only by the edges of their polygonal faces, as if 
they were totally transparent, but for the sake of clarity, the hidden portions of 
lines have not to be drawn. Hidden line removal algorithms can sometimes be 
derived from hidden surface algorithms, or one can alternatively directly treat 

4 - 0 

7 

Figure 2.30 Node representing octants 0,1,2,3 are traversed before nodes 4,5,6,7. 
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the object edges, z-buffer and painter's (or derived)methods, which use the 
frame buffer or similar devices, are inadequate for calligraphic drawings. 

The Roberts' algorithm [34, 34a] was the first solution proposed (Figure 
2.31). Initially, within each object, edges of polygons are examined to see if 
they are hidden by the object to which they belong ("self-hidden" parts). Then 
each surviving line of the object tested is compared to other objects (test 
objects) to determine the segments of edges eclipsed by them. In the third step, 
penetration of edges of the tested object into the test volumes is investigated. 
Junction segments are drawn between all pairs of penetration points and their 
visibility checked. All visible segments remaining are then displayed. Of 
course, adequate depth or minimax tests and priority lists can limit the 
volume of calculations. 

Rather than comparing all lines of the tested object to all other volumes, we 
can compare contour edges of all objects to each line. This is the method 
chosen in the quantitative invisibility model [35]. One follows a line and 
examines its intersections with edges to determine its invisibility when being 
hidden by an object lying in front of or penetrating it. 

2.4.9 Treatment of curved surfaces 

A common way to treat objects represented by curved surfaces is to 
approximate their shape by a polyhedron with a sufficient number of planar 
facets. The octree method, which can represent any type of object, is also 
usable without modifications. A surface subdivision algorithm which directly 
considers curved surfaces has been proposed [36, 36a, 36b]. Other methods 

4 

1 2 

Figure 2.31 Successive steps in the Roberts' hidden line removal algorithm (adapted 
from Rogers with permission [2]* ). * Reference from Chapter 1. 
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derive from the scan line algorithms [37-40]. The intersections with the 
curved surface (which are no longer segments, as for planar faces) are evaluated 
from the curves defining the surface, mainly from numerical techniques. 

The originality of Encarnacao's scan grid method [29] relies on the treatment 
of any arbitrary curved surface defined by a grid of lines limiting curved 
patches. A scan grid is superimposed on the projection of the surface on the 
image plane. A mimimax test is used to determine which surface patches may 
potentially overlap each scan grid area. After this presorting, one has to 
determine visibility only for those patches lying within the same scan grid 
area. For surface patches, the edges are approximated by straight lines and 
visibility is tested by selecting equally spaced points along them and looking 
to see if they are obscured by other patches (within the same scan grid area). At 
this step, curved patches are replaced by planar facets obtained by inserting its 
two diagonals into the patch. As for Warnock's algorithm, recursive sub- 
division of the grid scan can be carried out for regions of increased complexity. 

2.4.10 Ray tracing 

In contrast with preceding methods that take advantage of coherence, using 
ray tracing to determine the visible part of a scene is a "brute force" technique 
which will be discussed with shading models (see Section 2.5)[41-43]. Some 
scan line adaptation significantly speeds up the method [44]. 

2.4.11 Efficiency 

The performance of the hidden part removal modules depends upon the 
efficiency of the sorting steps (nature of the sorting algorithm), and also on the 
number of items to be treated. For instance, a scene with horizontally well 
separated surfaces favours a scan line method, whereas a distribution in depth 
is better approached through a z-buffer. A detailed discussion of the execution 
time, specifying the relative weight of the different steps, can be found 
elsewhere [45] (see also [16 p. 387, 21, 22]}. The priority algorithm of Newell et  
al. seems very attractive when few polygons are considered, but it slows down 
for a large number of faces, whereas the z-buffer has uniform performance but 
suffers from high memory requirements. Octree and area subdivision look very 
attractive if many surfaces are considered. 

2.5 RENDERING 

Whereas calligraphic devices are very attractive for interactive image 
modification or animation effects, one of the main advantages of raster devices 
is their ability to represent objects as space-filling solids. 
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The shading model (determining the light intensity and colour on the points 
of the surface displayed) constitutes the ultimate and more refined operation 
in the search for realistic images [46]. 

2.5.1 Shading 

This problem involves characteristics of the surface of the object and 
properties of the light falling on it. When a ray of incident light falls on the 
surface of an object, one (small) part is absorbed, the other is reflected or some 
light may be (partly)transmitted through the object (transparency)(Figure 
2.32). 

The scene may receive light from some point sources (such as a lamp, a 
candle) giving highlights on the surface, either directly or by reflection on 
neighbouring objects. There is also a diffuse illumination, constant for all 
directions. It arises from multiple reflections of light from nearby objects, 
walls of the room, sky, etc., constituting the ambient or background light. 
Shadows complete the display. 

A model giving visually satisfactory results was given by Bui-Tuong Phong 
[47] (see also [48]). It stresses that the colour or illumination attributes of each 
point of the object (that is, the total energy of light coming from each point (p) 
of the object) can be calculated by summing up the contribution of diffuse 
illumination (Eva), point light sources (Ep,) and taking into account transparency 
effects (Ep,): 

E~ = E~ + E, E~, + Ep, 

For a diffuse illumination of intensity Ia falling on the object, the shading on 
point P is: 

G~ = g j ~  

The reflective [actor Rp (0 < Rp < 1) relates the reflected energy leaving P to 
that arriving on it. For coloured surfaces, Rp depends upon the light 

Incident 

light 

Reflected 
. . . ~ . ~  light 

I \ Object surface 
Transmitted 

light 

Figure 2.32 Light falling on an object's surface may be absorbed, reflected or 
transmitted through the object. 
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wavelength, and three values (for green, red, blue colours, for instance) are 
usually incorporated in the treatment to reproduce the effects. 

Since changing the orientation of a face does not modify its shading, diffuse 
i l lumination does not generally lead to very realistic pictures. In fact, such a 
situation rarely occurs in the real world, where point sources nearly always 
intervene. 

When a point source is present, the shade varies with the orientation. 
According to Lambert's law, the energy of reflected light from a surface varies 
as the cosine of the incidence angle. 

In diffuse reflection, arising from the surface roughness, the light is 
uniformly scattered in all directions: 

Eps = (Rp cOS i)I~,s 
(Ips is the intensity of the incoming radiation from the point source.) 

In fact, the intensity falling on point P depends upon the distance (d)to the 
light source S. An expression like 

I 
ps COS i Eps - Rp d + d 

o 

where do may be adjusted, gives satisfactory shading. 
Note that Eps - 0 if i > 90 ~ i.e. if the surface point is hidden from the light 

sources. 
In addition to diffuse reflection, bright spots (highlights)are created by 

specular reflections more intense on shiny than on dull surfaces. In this 
process, the reflected light has the same colour as the incident light (a white 
light i l luminating a red object causes a white spot on the surface). 

Specular reflection depends upon the position of the observer with respect to 
the source and the surface. According to elementary optics, for a perfect 
reflector, the principal reflected ray corresponds to an reflection angle (r) equal 
to the incidence one (i)(Figure 2.33). 

For other directions the intensity of the reflected ray depends upon the angle 
of observation (0), and upon a specular reflection coefficient W(i), a function of 
the incidence angle (i)varying with the nature of the surface (Figure 2.34). 

Light source 

Ob, ec t \  . "  
surface ,, ~ O 

N 
f 

f 

Figure 2.33 Shading. i = incidence angle, N = normal to the surface. 
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Figure 2.34 Specular reflection coefficient W(i) as a function of the incidence angle i .  
a = silver, b = gold, c = glass (from Newman and Sproull with permission [16]). 

According to the Phong model, the specular reflection is expressed by: 

Er~ = W(i) cos ~ (0-r)Ips 

Generally speaking, W(i) increases towards a value near to the theoretical 
maximum of 1 at grazing angle (i = 90~ For shiny metallic surfaces such as 
silver, W(i) is high for all i values whereas for glass, for instance, W(i) is low, 
except for values near 90 ~ where it takes nearly the maximum value of 1. 
Similarly, for metallic surfaces, exponent n is large (n - 100): the reflection 
range is narrow about the direction r = i. On the contrary, a dull surface (such 
as paper} is given a low n value {down to 1} corresponding to a larger extent of 
reflected light. 

So, for a point source illumination: 

I p.~ 

Ep,=d+do 
~ [ R p  cos i + W(i}cos "(O- r)] 

The last term of the Phong model (Ep,) corresponds to transparency. 
Coefficient Tv determines what part of the energy arriving at P from behind 
(E~b) is transmitted: 

E~, = T~ E,~ 

Background objects seen through a transparent face may be treated by 
adapting some hidden surface method with depth-sorting. 

Refraction effects can also be included in the shading model. Although both 
diffuse and specular refraction can take place, shading models usually consider 
only specular refraction to limit calculation time. 

The preceding formulae give a straightforward evaluation of shading on each 
point, but for a reasonable resolution of 1024 x 1024 pixels this would lead to 
a large number (1 mil l ion)of  calculations. This can be alleviated by taking 
advantage of shading coherence: the intensity of adjacent pixels generally 
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varies only a little. So, for an object represented by planar polygons, the 
intensity on a face is constant and can be calculated from the normal vector to 
the face (provided the light source and the viewer are far enough apart, angular 
terms do not vary). For a rapid calculation of the angles involved see elsewhere 
[16, p. 393]. 

2.5.2 Gouraud and Phong smooth shading of polyhedra 

For a polyhedron formed of planar facets, shading, as explained above, leads to 
an image somewhat rough looking with straight line segments limiting areas 
of constant shading. These shortcomings are largely lessened but not totally 
erased in Gouraud smooth shading [49], which restores a smoother appearance 
to objects. Shading is varied across polygon surfaces so that the shade at the 
edges matches that of the neighbours (Figure 2.35). 

Normals are calculated at the vertices defining the facets, either, directly 
from the surface model (if known), or by interpolating the normals at the facets 
surrounding the vertex. By interpolation from the shades calculated at the 
vertices, shade values along edges of the facet are then obtained. Finally, for 
points internal to the facet, interpolation between the edge shades at the end 
points of the scan line is carried out. 

While this is satisfactory to get smooth pictures when the normals on two 
neighbouring facets have nearly the same direction, discontinous shading 
results from abrupt changes in orientation for adjacent facets. This relies on 
the Math band effects, related to the inability of the human eye to 
accommodate discontinuous changes of illumination. The eye then perceives 
light or dark bands at the discontinuity (dark areas appear darker and light are 
lighter at the boundary). Adding more polygons decreases the discontinuities 
and lessens this effect. On the other hand, if averaged normals have nearly the 
same direction (as for sheets gently folded), a misleading constant shading is 
obtained. Here also this can be removed by adding more polygons near to the 
boundaries, so that the average normal orientation varies (Figure 2.36). 

A D 

Scan 
line 

B s 

Figure 2.35 Gouraud's interpolation. Intensities at E and F are interpolated from 
intensity values at A and B (for E), and C and D (for F). Along the scan line intensity at 
P is interpolated between E and F values. Normals at vertices are represented by arrows. 
In Phong's model, normals rather than shades are interpolated (from Newman and 
Sproull with permission [16]). 
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Figure 2.36 If the average normals point in the same direction, a constant shade is 
calculated for A and B, rubbing out relief perception (above}. Adding supplementary 
polygons removes this effect (below} (from Newman and Sproull with permission [16]). 

The Phong's algorithm interpolates normal vectors rather than shades, and 
shading is applied to each pixel displayed. This technique remedies the main 
problems encountered with Gouraud's algorithm, and gives very realistic 
pictures, but requires more calculations. Sampling requirements to obtain 
highly realistic displays and problems encountered on the edges are detailed 
elsewhere [16, p. 402]. 

2.5.3 Transparency 

Adding the transparency contribution in equations implies knowledge of the 
light intensity coming at a surface point from behind it. This can be easily 
implemented in frame buffer algorithms. When successively adding polygons 
of a higher priority, the old intensity represents the light arriving from behind. 
In scan line algorithms, depth sorting also gives a way in which to cope with 
transparency effects. 

2.5.4 Ray tracing 

Ray tracing is a very powerful technique that is easy to implement and able to 
give highly realistic displays, since in the same step it also treats the problems 
encountered in hidden surface removal, shadows, transparency, etc. [50-53]. 
The main drawback is, however, its slowness, since, as can be seen from the 
following description, many intersections of light rays with surfaces have to be 
calculated. 

The principle of ray tracing is to follow the pathway of a light ray from the 
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light sources to each pixel of the display. In fact, the reverse way is easier: going 
back from the viewpoint through each displayed pixel into the object space [54] 
(Figure 2.37). 

Intersections with all the surfaces encountered are examined. If more than 
one surface is on the ray's path, only that closest to the observer is retained 
(unless transparent), performing hidden part removal at the same time [41]. 
The shadow problem is similarly solved, examining if the ray from the surface 
to the light source is interrupted by another surface, thus obscuring the light 
source [42, 43]. Various solutions have recently been proposed to increase the 
speed of ray tracing algorithms [55-58]. 

The shading (intensity value)for each visible point of the surface can then be 
evaluated considering the diffuse illumination and the light received from 
other objects through specular reflection. For this, the surface point is now 
considered as the viewpoint. One recursively examines the light coming from 
a given direction, taking into account, if necessary, intersections with other 
objects and related effects (reflection, transparency, etc.). For reflection, for 
instance, one can search for a reflected ray giving light along the ray followed, 
etc. 

2.5.5 Shadows and special effects 

More realism can be gained by displaying shadows. Their treatment implies 
knowing what faces (or parts of faces} are attained by light, i.e. are visible from 
the light sources. The problem is therefore closely related to hidden part 
elimination. One way is to repeat hidden surface calculation using the light 
source as the viewpoint. Surfaces which are visible but which are hidden from 
the light source are displayed with only diffuse illumination. The others 
(visible from both the actual viewpoint and the light source) in addition receive 
direct light source illumination. 

A possible solution is to define shadow polygons [59] constructed from the 
outline of the object when viewed from the light source. These shadow 
polygons are added to the polygons representing the faces of the objects, and all 

Light source 

Pixel position 

Viewpoint 

Figure 2.37 Following the ray trace backwards from the viewpoint to the light source 
{adapted from Heam and Baker [ 1]* ). * Reference from Chapter 1. 
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these polygons are submitted to hidden part removal algorithms. The 
operation is easily incorporated into z-buffer techniques: a first z-buffet 
determines the foremost visible surfaces, and a second one (a shadow z-buffer) 
establishes if these points are in the shadowed volume, i.e. between the back 
and front faces of the shadow volume (Figure 2.38). 

Texture and surface patterns allow for more accurate representations of real 
world objects. We shall not develop these points, since such techniques are not 
used largely in molecular modelling: it is sufficient to say here that texture can 
be simply introduced by giving some appropriate modulation to the reflection 
coefficients in the shading model. This changes the colour without modifying 
the flat appearance of the surface. 

Changing reflection coefficients determined by sampling was also used to 
simulate highlights arising from an image mapped on to the surface of the 
object displayed (see elsewhere [16, p. 408] for more details). 

/~ Lightce 

Figure 2.38 Shadow polygon (S) does not receive direct illumination from the light 
source (adapted from Heam and Baker [1 ]*). * Reference from Chapter 1. 
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Creating molecular images may be considered as a part of generative graphics: 
the creation of synthetic representations of real or conceptual objects. The 
general method is to first define an abstract description of the scene or objects 
that is understandable by the computer. This model is then transformed into a 
picture on a display device. However, owing to the diverse nature of chemical 
representations, various approaches have been considered, according to 
whether interest is focused on either geometrical and structural descriptions 
or electronic features. 

For the representation of objects in the real world on a computer screen, it is 
important in a first step to search for a data structure or for simpler constituent 
parts, graphics primitives, to make picture generation easier. This 
structuralization can be achieved either on the object itself ("sketchpad") or on 
the space to be embodied (voxel subdivision)(Figure 3.1). 

Such a situation is sometimes also found in chemistry. When creating 
molecular models reproducing the usual wire frame or plastic CPK ("space 
filling") representations on the display screen, the structure of the chemical 
object already exists. The basic laws of valence theory, for example, express the 
organization of the atomic framework, and provide the generation algorithms 
required to build the images. Atomic spheres (for a toms)and cylinders (for 
bonds) constitute a set of primitives for the molecular body (possibly 
supplemented with a few other simple shapes for macromolecules such as a 
ribbon, helix, etc.), and the problem mainly relies on geometric or analytical 
handling. 

On the other hand, the problem is more complex when representing 
property shapes related to electron distribution. For these more conceptual 
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objects, the overall shape is neither known a priori, nor easily defined through 
an analytical expression. The first task is therefore to generate the information 
to be represented in the 3D space and give it the appropriate structuralization. 

From a quite different point of view, the type of display device favours 
certain representations. Of course, calligraphic (vector) systems only allow 
line drawings, whereas raster devices make it possible to display "solid" 
images. So, vector systems are particularly interesting for wire frame models 
stressing molecular topology and atomic positions. Their advantages lie in the 
high resolution and image quality attainable, and the possibility of (quasi-) 
real-time manipulation. 

Rapidly increasing capabilities of microcomputers and raster display devices 
prompt interest in shaded images, more static but superior for the presentation 
or publication of 3D models. Many recent efforts focus on improving rendering 
and creating, within this context, more aesthetic images, able to approach 
photorealism. In fact, realism provides good clues for a more rapid and 
complete understanding of 3D features such as depth, size and shape. 
However, some authors put a caveat on the excessive use of transparencies, 
reflections, etc. able to produce images that are visually confusing and difficult 
to interpret. 

Another distinction also appears between 2D and true 3D images. In the first 
case, one only builds a projection of a 3D object on the screen, and the 
calculations have to be repeated when the object or the point of view is moved. 
With true 3D treatments, motions are allowed without the need for a complete 
new calculation~ only the projection of the scene has to be updated. 

Among general trends {according to the widespread use of raster devicesl, 
one can note the frequent use of templates ,  calculated only once and 
"stamped" at the appropriate position, an idea already used by Basch [2] as 
early as 1983. The z-buf fer  technique [possibly with some adjustments) is also 
largely generalized for hidden-part removal. 

1111 

H"~ HH 

Figure 3.1 Representation of real beings or objects first implies the identification of 
primitives and any knowledge of their combination laws. In some chemical 
applications, shape primitives and structuralization rules are already known {from 
Dubois et al. [1]). 
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We shall first detail some representations of structural shapes before coming 
to the more complex problem of property shapes. 

3.1 REPRESENTATION OF STRUCTURAL SHAPES 

The simplest images, such as "stick" (or "wire frame")models, present a "see- 
through" representation focusing on molecular topology (relative positions of 
atoms and existing bonds between them)[3], which can be made interactive up 
to a few thousand atoms. The simplest (and perhaps the oldest)computerized 
images in chemistry only use a single line segment for each bond, and can be 
modified in real time [4]. In more recent displays, for a better visual perception, 
bonds are colour encoded along half their length, according to the atom type 
from which they are issued. 

A better insight into the molecular body is provided by space filling models 
built by the union of the van der Waals spheres of the constituting atoms. 
These can be treated either as line drawing representations (the only one 
attainable on vector devices) or as solid images (raster systems)(Plate I). 

Dot representations also deserve special emphasis in view of their 
widespread use. The Connolly's Molecular Surface algorithm [5, 5a] spreads 
points with a constant density onto the molecular envelope, built from atomic 
spheres, possibly completed with reentrant parts (see Chapter 8). These dots 
give a very pleasant representation of the molecular body, since they allow for 
some perception of the atom framework inside. They also provide a data 
structure either for triangulation processes, leading to the display of the 
molecular surfaces as solid images, or for deriving structured surfaces (4D 
images), where dots are colour encoded with the value of a property: MEP, 
hydrophobicity, etc. [6, 7]. Owing to their large involvement in molecular 
surface and volume evaluations, these dot representations will be developed in 
a separate section (see Chapter 8 and Plate II). 

Space structuralization by a lattice of nodes (used either directly or as a basis 
for further refinement) is also a possible avenue to surface representation, as 
detailed in Chapter 8. Such applications are still in close relation to surface and 
volume calculation owing to their ease of implementation and their capability 
for easy logical (Boolean) operations. We will only present space 
stucturalization for the display of electronic properties here, since it is the 
most general approach of these features. 

3.1.1 Calligraphic representations 

Starting from the pioneering work of Warme [8], in 1978 Smith and Gund [9] 
proposed a line drawing algorithm for the display of CPK representations on 
vector devices. Atom spheres project onto the screen plane as one of their great 
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circles. Intersection between spheres is a circle (in a plane perpendicular to the 
line of their centres) that projects as an elliptical arc. Thanks to appropriate 
scaling, rotation and translation, all circles to be drawn are derived from a 
standard circle approximated by a 24-edge polygon. Hidden-part elimination is 
carried out by comparing each polygon edge with each relevant sphere. For 
these two operations (hidden-line removal and determination of intersections), 
analytical solutions are carried out. Time is saved, for each current atom, by 
sorting among the other atomic spheres those that are intersecting or eclipsing 
it (Figure 3.2) Adding some parallels or meridians to the spheres, or drawing 
hatchings to parts facing away from a light source, as in the earlier options of 
the PLUTO package', gives images greater realism. Largely widespread in 
crystallographic papers, the ORTEP algorithm draws ball and stick models, 
where the atomic spheres are replaced by thermal ellipsoids [10] (Figure 3.3). 

(a) (b) 
Figure 3.2 Calligraphic display of space-filling models (5Me-SEt-5,6 dihydro-2(1H)- 
pyridone) from the SPACEFIL algorithm. The outline drawing (a) is completed in (b) 
with cross-hatching from meridians and parallels (with permission from Smith and 
Gund [9]). (See also Plate I a.) 

3.1.2 Molecular representations as solid objects 

In calligraphic representations, such as those obtained from vector devices, the 
drawing is built from line segments characterized by their start- and end- 
points. For solid object images [attainable with raster systems}, the attributes 
of each pixel constituting the image on the screen have to be determined and 
stored in the frame buffer. 

Before presenting more refined programs to generate CPK images on raster 
devices, let us first recall that the painter's algorithm suggests a very simple 
way in which to feature a molecule. It paints on the frame buffer a filled disc 
for each of the atoms sorted from the rear to the front. No sphere intersection 
is represented, but the overall shape of the molecule is fairly well suggested. 
Note that this very simple and cheap algorithm is used on some low level 
modelling programs running on personal computers (Figure 3.4). 

Not so far from the painter's algorithm is the treatment proposed by 

' PLUTO, a program for plotting molecular and crystal structures; University Chemical 
Laboratory, Lensfield Road, Cambridge CB2 1EW, UK (S Motherwell). 
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Figure 3.4 The painter's algorithm allows for an immediate rough perception of the 
molecular shape, without treating intersections between atom spheres. 

Thomson et  al. [11] from the well-known Connolly's dot representation (the 
Connolly's Molecular Surface program generates dots on the molecular 
envelope and specifies the direction of its normals). To get a nearly complete 
solid surface, dots are replaced by discs (in fact octagons)tangential to the 
surface. Sorting by depth (with respect to the screen plane), as in the painter's 
algorithm, virtually ensures hidden-part removal. 

3.1.3 Some aspects of z-buffer techniques 

Owing to their simplicity of implementation, the z-buffer techniques have been 
widely used as standard tools [12, 12a]. For each pixel of the screen plane (defined 
by its x,y coordinates), it suffices to determine which atom is the closest to the 
observer. In principle, spheres need not to be sorted, but are rendered one by 
one. For each pixel, the z value of the current atomic sphere is compared to the 
value stored in the buffer. If the new value is lower than the previous one, the 
point is visible and therefore the depth and colour are updated. 

However, such a comparison, involving all the atoms of a molecule, may 
become cumbersome when carried out on each pixel of the image (a medium 
resolution image of 512 x 512 pixels would require 256 K comparisons ...)[ 13]. 
Sorting the pixels to test dramatically improves the situation. On the array of 
pixels forming the image, the vertical and horizontal extents of each atom are 
determined. For each (let us say horizontal) pixel line, one selects only those 
atoms whose vertical extent spans this line. A similar sorting can be made on 
the horizontal extents so as to substantially limit the depth comparisons 
needed on each pixel (Figure 3.5). 

One advantage of the z-buffer, when compared to other hidden-part removal 
methods using depth sorting on the scene to be drawn, is the ability to add new 
components at any stage of completion. We have only to update the depth and 
colour of the relevant pixels. In the study of molecular interactions, for 
example, a small ligand can be added to a large biomolecule without modifying 
the whole image. 

Variants requiring less memory have been proposed, such as the line buffer 
("scan line of the z-buffer")proposed by Porter [14]. Only the scan line is 
examined each time, and its contents are sent on the frame buffer (incremental 
methods rather than time con.suming calculations involving square-root 
evaluations speed up the process [12, 12a]. 
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Figure 3.5 Circles, projections of the atom spheres on to the array of screen pixels, 
can be sorted according to their vertical extension. For the current scan line 
investigated (bold dots), only spheres D, E and F have to be considered (from Pearl [13]). 

In the scan line plane, intersections of atomic spheres are circles, and 
substantial t ime is saved by taking advantage of some scan line coherence. 
Intersections of spheres determine on the scan line stretches along the x axis 
where only one sphere is visible. For each of these intervals, visibility is 
calculated on an arbitrary position of each arc. Assigning priorities to circles 
within the scanning plane and making use of some correlation between the 
current scan line and the preceding one increase speed still more [19]. 

Another interesting adaptation is the "3D depth buffer" [15]. Usually, a 2D 
depth buffer stores only one pixel for each (x,y) location, that nearest to the 
observer. On the contrary, in the 3D depth buffer, several pixels (in fact voxels) 
are stored, each at a different depth. As stated by Connolly [15], "hidden 
surfaces are not eliminated but rather stored in a linked list sorted by z 
coordinate, so they can be revealed by clipping and translucency." This 
approach constitutes an at tempt to transfer to raster systems some of the 
capabilities of vector graphics: the ability to clip the image so that the interior 
is visible, to display a transparent molecular surface, etc. 

3.1.4. Templates 

Among the current trends for both constructing and rendering operations is 
the increasing use of templates calculated once and stamped at the 
appropriate location in the image. The representation of molecular bodies 
easily falls in with that type of solution. Assuming orthographic parallel 
projection and a light source at infinity, the size and shading of a sphere 
become independent of its position. Thanks to this [3], the expensive shading 
calculations are made only once, which allows for providing high quality 
images for systems up to 1000 atoms within a reasonable time. Although 
interesting in terms of speed, templates are memory  expensive, and image 
manipulation requires recalculation of the pixels' attributes. An elegant way 
in which to ensure geometrical transformation is to come back temporarily 
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to a wire frame representation, allowing for more rapidly defining the new 
atomic positions. Templates are then stamped at the updated locations 
{Figure 3.6). 

Interestingly, there is an obvious analogy between a processor array 
architecture and the pixel array of a raster screen. This connection has been 
taken advantage of to generate molecular images on a highly parallel 
computer. A 512 x 512 pixel image is organized by blocks of 64 x 64 pixels and 
treated using an array of 64 x 64 single bit processors {4096 in all)[16]. No 
doubt promising solutions are to be expected in this field opening the way 
towards truly interactive raster graphics. Parallel processing facilities have 
also been presented [171, where four different memory buffers are 
simultaneously used to update the pixels' position and visibility. 

/ 
I 

I 

Figure 3.6 Atom templates are made up by a front-facing hemisphere of van de Waals 
spheres. Each pixel (x, y) of the flame buffer is encoded with the corresponding z value 
and shade value (given the light source direction)(Palmer and Haussher [3]). 

Let us now look in more detail at image generation by templates. Palmer and 
Hausheer's "context flee" spheres [3] designed for improved rendering, or 
Johnson's device-independent model [18] are relevant such approaches. The 
template is stored in a matrix of ceUs containing both shading and depth 
information, organized for instance as a 4 • n array (n depending upon the size 
of the atom} containing the {relativel x,y location of the pixel, its surface z 
value and shading value {for a preset direction of illumination}. 

Given the atomic positions, this information will be transferred to the 
image data structure: a matrix of ceils equal in size to the output image 
generated. Stamping templates at the appropriate position results in a viewer- 
visible shell hanging between the background and the image plane. Image 
space comparison of the depth values then determines visibility with a z- 
buffer technique. 

Typical values for template definition {indicated by Basch [2]} correspond to 
about 20 pixels per A (i.e. 35 pixels per carbon atom}, which allows for an 
image about 45 x 45 A on a screen displaying 900 x 900 pixels. Such a use of 
templates would imply that the atomic centres always coincide with centres 
of pixels, which does not always occur. However, the resulting distortions of 
molecular geometry remain small on static imges, although they may create 
unpleasant "jump" effects in animated sequences. 
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3.1.5. Rendering" shadowed images and ray tracing 

Adding shadows provides supplementary visual clues for understanding the 
3D structure. One possibility is to repeat the visibility calculation taking the 
light source as the point of view, according to an idea proposed by Williams 
[20]. "Visible" regions are the i l luminated ones, whereas if an a tom is not seen 
by the light source, then it is in shadow and may be shaded as such [21-23] 
(Figure 3.7). 

To generate this second image with  the light source as point of view, 
Goodsell et  al. [22] introduce a second template: the shadow template.  It 
contains the z value of all points of the sphere visible from the light source and 
projected onto a plane coplanar wi th  the image plane. These data are stored in 
a second z-buffer (shadowing z-buffer) wi th  modified a tom positions. To 
determine points in shadow, the two buffers are compared pixel by pixel if the 
depth of the surface pixel is greater than the z value of the shadow map, the 
point is shadowed. 

A priori,  ray tracing seems very attractive owing to its powerful possibilities 
for rendering treatments,  the simplici ty of calculations for sphere/ray 
intersections and its easy implementat ion.  However, for large molecules it 
would rapidly become inefficient in view of the large number  of spheres to test. 

x,y 

(a) (b) 

0 
�9 I 

{ p Aa 
Ba 

Viewer-visible 
surface 

Ba 

A 
Bsh 

0 
Image plane 

(c) 
Figure 3.7 In the scan plane, the visible atomic surface is delimited by a circle. 
Templates are stamped at positions Aa and Ba (a). For a set direction of illumination, a 
shadow template can be drawn (b), L being the light vector. To determine the shadowed 
points, shadow templates are mapped into a second z-buffer. Comparison of z values in 
the z and shadow buffers determines points in shadow; here, for instance, point P is 
shadowed. The viewer is at the top of the figure with z axis oriented towards him (with 
permission from Goodsell et al. [22]}. 
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Methods have been proposed to reduce this number, allowing for rendering of 
complex molecular systems [24-26]. 

Derived from ray tracing and z-buffer techniques, special rendering effects 
were proposed by Goodsell et  al. [22, 23] for molecules embedded in space- 
filling coloured clouds or transparent surfaces, representing electrostatic 
potential, electron density, etc. and sampled on a grid surrounding the 
molecule. A ray is cast from each pixel away from the viewer through the data 
grid. Its shade is incremented as it passes through more or less opaque areas of 
the grid until it strikes the molecular surface or the background. 

3.1.6 Spherical lune templates 

Most of the preceding methods only generate 2D images taking advantage of z- 
buffer capabilities. As a part of our concern for a flexible and transferable 
molecular modelling system, we have developed a true 3D representation of 
molecular bodies using only spherical lunes as templates [27]. Rather than 
storing a full sphere, the template is constituted by one spherical lune, 
approximated by a set of quadrangular planar facets and two triangles at the 
ends. 

Although dedicated to a raster device, the method is suited for both 
calligraphic or solid displays, since the atom spheres are first defined by a set 
of planar polygonal facets which can be treated by looking only at their contour 
lines (chicken-wire drawings) or considered as colour filled surfaces [Figure 8.8 
and Plate III). 

The atomic spheres are drawn at the appropriate location by successive 
rotations of this graphics primitive~ an operation easily and rapidly performed 
using hardware rotation and translation capabilities now offered by most 
workstations. Shading needs to be recalculated for the newly generated part of 
the image, but this is not a problematic task [with hardware functionsl, since 
normals are determined by the rotation process. The method is very cheap in 

I 

I 
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I 

Figure 3.8 Spherical lune template. 



REPRESENTATION OF STRUCTURAL SHAPES 6 9  

terms of memory requirements and rendering time. For a good quality image, 
constituted from about 300 facets, a template of only 12 elementary facets 
needs to be stored in memory. 

The user can interactively modify the number of facets, choosing either 
more facets for realistic displays, or only few for a rough representation, which 
may be animated in nearly real-time. This capability looks quite interesting in 
docking or shape adjustment studies, since the user is able to maintain some 
perception of the bulk of the molecular body during the session (such "steric" 
features are, of course, completely lost with the common use of wire frame 
models at this step). 

Portability 
In the past, device dependence seriously hampered a wide diffusion of 
modelling packages. Portability requires that specific hardware functions are 
avoided, so that the speed of the algorithms becomes essential. In this context, 
as stressed by Johnson [18], although a direct comparison is difficult from the 
published data, in view of the diversity of the devices and representations 
chosen, the simple use of templates and of the z-buffer algorithm offers quite 
interesting capabilities. For better portability, the image is generated in the 
memory of the host computer as a colour matrix (each element corresponding 
to a pixel on the display screen). Once this is achieved, the image is transferred 
on to the memory of the raster display, limiting the number of code lines to be 
re-written when changing the display device or graphics library. 

Stick-type models 
For more complex molecules, where it would be too long to display all the 
atom spheres, a stick model, where bonds are represented by shaded cylinders, 
may more easily give some (approximate) insight into the molecular body and 
its steric requirements [18]. However, cylinder templates are not as easy to 
treat as spheres, since their shape and shading depend upon their location. As 
a compromise to rapidly generate such shapes, a circle is first drawn and 
rotated so as to be normal to the cylinder axis direction. Shading is calculated 
for each point of the circle. The corresponding generatrix is drawn with this 
constant shading and mapped onto the buffers. 

3.1.7 Space subdivision 

Other hidden-surface algorithms rely on space subdivision [28]. Each sphere 
image is divided into a list of regions bounded by vertical line segments or arcs 
of circles. For the sake of simplicity, intersections (circles projected as ellipses) 
are treated on the screen as circles passing through three points of the ellipse, 
and are used to define new points for subsequent subdivision. Non-visible 
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parts are removed from the list. Once all intersections have been examined, 
atom by atom, the remaining parts in the atom list are displayed as trapezoids 
and rendered one-by-one along vertical scan lines (Figure 3.9). 

Shading and highlights have been added by Max [21, 29, 29a]. Ray tracing and 
z-buffers require time proportional to the number of pixels. With an area based 
algorithm, the visible portions of each object are calculated to an arbitrary 
precision (usually that of the computer) and rendered at the desired resolution. 
Shading cost is resolution-dependent, but not the visibility calculation, which 
depends upon the number of atoms and the complexity of the image [21]. To 
add shadows, the subdivision method can be applied twice, to produce first one 
view from the observer and then one from the light source [21]. 

1 
) 

Figure 3.9 Successive steps of the space subdivision method. Each sphere is 
subdivided into two trapezoids. Intersecting and overlapping spheres create additional 
trapezoids (from Knowlton and Cherry [28]). 

3.2 REPRESENTATION OF PROPERTY SHAPES 

The representation of shapes related to electronic properties poses a double 
problem. First, for these properties, neither an easy analytical solution nor pre- 
defined primitives are known, so we have to generate data and define for them 
a convenient data structure. Second, given the property to display, we have to 
select the type of representation. Indeed, in our 3D space, representation of 
functions of one or two variables, y = f(x} or z = F (x, y) does not cause any 
problem. In the later case, for instance, one possibility is to draw, in a 2D map, 
contour lines associated with a given value: F(x,y)= constant. Another is to 
represent a perspective drawing of the surface z = F (x,y), the z coordinate 
giving the value of the function for each couple of x,y coordinates [30]. 
Unfortunately, the situation is more complex for the commonly invoked 
electron properties (electrostatic or hydrophobic potential, electron density). 
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They are scalar functions of 3D coordinates, F(x,y,z), taking a value for each 
point of the space. Some methods have to be found for an easy visual 
perception of such 4D entities. Among them, using colour proves to be very 
useful for representing this supplementary dimension. 

The problem is still a little more complex for the display of a property such 
as the electrostatic field, which is defined as a vector with a modulus and a 
direction: small arrows (with appropriate orientation and length) are generally 
used to schematize the field values on selected points in the space. Although 
not commonly used, until now, the electrostatic field has been proposed as 
another "electric image of a molecule", giving more importance to charges 
near the probe point than the electrostatic potential does, owing to a variation 
in r -~, in place of r -~. We will not discuss this point any more. 

For the representation of scalar properties, P(x,y,z), a first solution consists 
in displaying an isovalued envelope gathering all points where the property 
takes the same preset value (constant valued surface: P(x,y,z)= Cst. This relies 
on surface modelling where objects are described by shaping their envelope 
like a skin around them. Images are then presented as a mesh of curved surface 
patches or a network of polygon shaped facets (Figure 3.10) (Plates V, VI). 

However, for those properties we are concerned with, the envelopes 
corresponding to diverse values recover each other, as the skins of an onion, 
and so partially mask each other. Even with line drawings (chicken-wire 
models) or using transparencies, only a few surfaces can be drawn without 
resulting in a very intricate and confusing image. 

Another avenue is to restrict the representation space: either in a given plane, 
leading to maps of isovalued contour lines (as common geographical maps), or 
along a molecular surface or layers derived from it. One can even display only 
a projection of this encoded surface on the screen plane [32] (Plate VI). 

Contour 
lines 

~ ~  Voxel 
model 

Surface 
model 

Figure 3.10 Serial sectioning by parallel planes and creation of 3D images: packets of 
cross-section surface outlines or isovalued contour lines, P(x,y,z) = Cst, can be used to 
directly schematize the shape or make up the basis of a model built by triangulation for 
volume reconstruction. Alternatively, a voxel model can be derived (with permission from 
Aniyo et al. [31 ]). 
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Colour encoding molecular surfaces with a property value (giving a visual 
indication of this property value on points of the 3D space) corresponds to 
structured surfaces [6], or 4D images. Note that, as stressed by Heiden et al. 
[33], such 4D images constitute a very powerful representation. Displaying 
the molecular surface and colour encoding it (according to, say, molecular 
electrostatic potential - M E P -  values) focus attention on both topological 
and electrostatic complexity, allowing for easier identification of recognition 
sites. This global perception also appears very useful for stressing differences 
regarding the activity of structurally similar molecules. (See also Plates I Ib  
and XII. ) 

As previously pointed out, for those properties which can be easily attained 
only through numerical evaluation, one must first generate a structured array 
of data and specify its organization (particularly the relation between the 
localization of the observation points and the values of the property sought). 

A common approach is to use a structured space maintaining the image. For 
instance, the system under investigation is immersed in a lattice {"3D grid"). 
Its nodes or elementary cuboids ("voxels" or volume elements)will constitute 
the basic elements from which information will be sought. Another possible 
data structuralization method comes from the very popular Connolly 
algorithm, scattering dots on to the molecular surface. 

3.2.1 Lattice embedding and determining isovalued points 

Let us now look in more detail at the derivation of such isovalued envelopes. 
Suppose the problem is to represent the contour corresponding to a preset 
value of the MEP or any other one electron property. First, the molecule is 
immersed in a 3D lattice constituting the calculation and representation 
space, and we evaluate the MEP on each node of the lattice. Then, along each 
edge, points corresponding to the set value ("isovalued points") are determined 
by interpolation between adjacent nodes (Figure 3.11). 

Once the isovalued points are determined, joining them forms polygonal 
contour-lines, and representation relies on serial sectioning. From cross-section 

Figure 3.11 Lattice embedding. 
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outlines drawn for packets of parallel planes, various strategies are possible, 
according to the type of display selected (see preceding section). 

Chicken wire drawings 

A combinat ion of two (or better, three) packets of such contour-lines in 
orthogonal planes provides a mesh of surface patches representing the 3D 
surface in chicken-wire models [34-37] (Figure 3.12). 

Figure 3.12 Chicken wire representation by combination of cross-sections: 50 
kcal/mol repulsive MEP (featuring the molecular shape) for thiopene. Three packets are 
drawn (athough two would in principle be sufficient for a 3D perception) to give more 
aesthetic displays when rotating the image (Yue [36]). 

As to graphics aspects, we stress two features: 

1. Given the points with the appropriate property value, how to sequentially 
join them along a polygonal contour? The procedure relies on the Freeman 
code. From the current point, one explores the adjacent edges successively 
to form a linked list of isovalued points (Figure 3.13). 

1 

k9 
i 

-.... 
, /  

/ -  

Figure 3.13 Searching for the next isovalued neighbour points located on either a 
vertical or horizontal edge of the node lattice: 2D schematization. 
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. Some ambiguity can appear when the same voxel is traversed by tw 
contour lines {four intersection points on the edges}. For simple shapt 
(assuming monotonic variations of the propertyl, examination of th 
property gradient allows for specifying how points must  be joined [36,3 7] 

Note also that some uncertainties arise in situations where tw 
intersections would exist on a single edge {Figure 3.141: part (a) on the schem 
will not be represented. Fortunately, this would only occur in regions whex 

I1 ! I 

Figure 3.14 Problems in connecting edge intersections. 

the object to be displayed has an extent comparable in size to that of a voxel 
so that the resulting error on the overall shape remains small. 

Finally, to avoid confusing images that are difficult to interpret, a hidden 
line removal process has to be carried out. Possible processes will be indicate, 
in Chapter 8. One can, for instance, examine successively the visibility of eac] 
polygon edge owing to its location with respect to the planes of the othe 
polygons. 

Triangulation and solid images 
With raster systems {chemical} objects can be presented as polyhedral solid 
limited by coloured facets. Various approaches have been suggested to defin, 
the solid surface thanks to a mosaic of triangles connecting suitable dat~ 
points on adjacent contours in a slice [Figure 3.15). 

Triangle (the simpler planar polygon} interpolation is highly attractive 
since it makes the calculation and use of rendering refinements easier tc 
derive more aesthetic images with smooth shaded and shadowed surfaces (se~ 
Chapter 8). It can also be extremely efficient in terms of speed, provided somq 
care is devoted to optimize the generation process [33]. To build such a mode 
it is necessary to ~et tooolo~ical information about the relation between twt 
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Figure 3.15 Generating triangular facets from cross-section outlines {intermediate 
steps in the representation of the MEP of a water molecule} (from Roch [38]}. 

adjacent cross-sections, and several solutions have been proposed [31, 38--42]. 
In the approach of Koide et  al. [43], data are organized through linked lists 
between hierarchical levels characterizing the surface to be represented, the 
constituting elementary triangles, their vertices and normals (Figure 3.16J. 

Although more naturally devoted to raster displays, owing to their capability 
of providing solid images, triangulation algorithms were also recently used in 
vector devices, and look well-suited to plotters because of the simplicity of the 
drawing [43]. Serial sectioning can be also be used in discrete solid modelling. 
The volume included between successive contour lines is divided into small 
cuboids considered as basic cells of the solid body. 

Polyhedron-ID 
Surface 
constant C 

Molecular 
orbital ID 

Molecule ID 

(a) 

I P~ hedr~ I 

Triangle list 3 vertices 
(pointers to vertices list) 

J K L 

~k ~c ~r 

~r ~ 

Vertex list Coordinates Normal vectors 

x y z u v w 

(b) 

Figure 3.16 Successive levels of data organization in the tessellation approach of 
Koide et  al. [43]. 
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Subvoxel  t r ea tmen t  

In the same way, elementary cells defined by the embedding lattice can be 
spanned into smaller units that are easier to treat: cutting off corners of a voxel 
(plus the central par t )creates  five tetrahedrons. As in the previous methods, 
intersections of the contours sought for with the edges of these tetrahedrons 
are determined by interpolation from node values. They consti tute the vertices 
of triangular or tetragonal facets limiting the shape [43, 44] (Figure 3.17). 

Figure 3.17 Subvoxel treatment of a node lattice. The elementary cell is expanded 
into five smaller tetrahedrons (the upper right-hand one is not shown). Isovalued points 
on edges and diagonals of the cell are interpolated between node values (from Purvis 
and Culberson [44]}. 

3.2.2 Reducing the representation space 

Introducing geometrical constraints leads to subimages: simplified views, but 
allowing for s imultaneous display of a larger number  of property values. 
Several options have been proposed. 

Map of isometric  lines 

The same generation strategy is applied: evaluation of the property on a pre- 
defined grid in a given plane, interpolation to find the isovalued points then 
drawing the contour lines. Note that, with a raster display, one can lay colour 
on areas between isocontours corresponding to preset values [39, see also 45, 
46] (Figure 3.18; see Plate VII). 

Representat ion of a property on van der Waals type surfaces 

Thanks, for instance, to the Connolly's algorithm, dots are scattered with a 
regular density on to the molecular surface. The property is evaluated on these 
points:, and colour encoded. To increase speed, an octree technique has been 
introduced [47]. The molecular surface is produced by recursive spatial 

'Evaluation of one or one-electron properties on the van der Waals surface and derived layers, or 
on a preset grid, is currently provided by the Gaussian ab mitio or other semi-empirical M,, 
packages. 
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Figure 3.18 Planar map of isovalued contours: MEP STO 4-31 G of formamide in the 
molecular plane. Contours are given in kcal/mol (from Roch [38]). 

subdivision. The cubic space area investigated is divided into eight smaller 
cubes. Those completely empty or situated inside the molecular body are 
discarded. The remaining ones (containing some part of the surface) are further 
subdivided into eight, down to pixel resolution. 

Although pleasant, since they allow for perceiving the molecular skeleton, 
dotted surfaces in some cases may give complex images on screen, 
camouflaging the relevant information by the interference of background and 
foreground dots [33]. For simpler displays, triangulation can be used to 
generate solid representations from these dotted surfaces (a surface defined by 
point coordinates). This also appears useful for quantitative evaluation of 
molecular areas and volume. Connolly [48, 49] proposed a triangulation 
algorithm working on analytically defined solvent-accessible surfaces: 
recursive subdivision of edges limiting the curved faces (parts of spheres or 
tori) determines the elementary triangles. Sequences for building such images 
are illustrated in Plate II. 

A special emphasis on speed for interactive manipulation and applicability 
to large biomolecules leads Brickmann [33] to propose a hierarchy of 
triangulation strategies, applying different conditions to different surface 
regions. In the tmesh  strategy, the propagation phase generates each 
elementary triangle from an already existing edge, so that each new piece is 
defined by only one new point (Figure 3.19). Although proposed in the context 
of a Connolly dot-representation of the molecular surface, the triangulation 
algorithm of Brickmann is also applicable to isovalued points derived from 
interpolation on a node lattice. (See also Koide et al. [43] for a propagation 
algorithm to generate triangles from a set of isovalued points.) 

According to the authors, the capabilities of actual super workstations, able 
to generate roughly l0 s Gouraud shaded triangles per second, allows for the 
interactive manipulation of large biomolecules (about 30 000 dots for trypsin). 
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Figure 3.19 Growing a triangle tmesh. Starting from point 1, the first triangle is built 
with the two nearest neighbours {points 2 and 3). The last edge drawn (1-3) is the basis 
of the next triangle (with permission from Heiden et al. [33]}. 

Genera t ion  of a 2D v i e w  by  a p lanar  projec t ion  ou ts ide  the 
mo lecu la r  bo dy  

This method is somewhat similar to that of Greer and Bush to determine the 
molecular surface {see Chapter 8): from each node of a (x, Yl grid, a line is cast 
along the z direction until it reaches the surface. The property sought {say, the 
MEP) is calculated at this point, and the returned value is used to colour 
encode the corresponding part of the screen [32] {Figure 3.20). 

, •  Direction of 
observation 

Grid ..-.-,.-. indow 

~ erpendiculars 

Molecular 
su,fface 
envelope 

Figure 3.20 Generation of a 2D view by a planar projection outside the molecular 
body {from Lavery et al. with permission [32]). 

3.3 CONCLUDING REMARKS" SYMBOLIC PICTORIAL PRIMITIVES 

Large biomolecules are far too complex for the representation of all atoms in all 
cases. The structural formulae of polypeptides are, for example, mainly 
described using one {or three) letter symbols identifying the constituting 
amino acids. Similarly, for display of their 3D organization, a hierarchy of 
levels with increasing precision has been managed. 
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In a first step, to feature only the overall shape, sets of larger graphics 
primitives (prefabricated standard fragments) can suggest the essential 
morphological characters. On-line modelling of proteins often uses such 
schematic representations to define the secondary structure: cylinders or 
regular helices depict ~ helices, broad arrows or ribbons represent ~ strands, 
etc., randomly coiled chains being only indicated by their Ca-C~ bonds. More 
details are sometimes necessary for limited parts of the macromolecule, for 
instance when looking at interactions between a ligand and an active site. In 
such cases, one can turn to the usual representations at atomic scale, and 
display, for instance, part of the molecular surface as previously described. (See 
also Chapter 13.) 
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Molecular geometry is of course the starting and virtually indispensable 
information for numerous modelling problems: display of the molecular 
architecture, determination of the electronic structure, evaluation of the 
interaction mechanisms, etc. Detailed structural information provided by 
atom coordinates has an enormous impact in chemistry and biology, and 
appears essential for the understanding of many biological or chemical 
processes at the molecular level [1 ]. 

Of course, a "theoretical" estimation of molecular geometry is attainable 
through molecular or quantum mechanics programs, but access to experimental 
determinations for the molecule under investigation, or (no less interesting) for 
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a set of closely related structures, appears to be valuable. Various spectroscopic 
techniques can give some information {more or less comprehensivel about 
interatomic distances, depending upon the size of the system under investi- 
gation [small molecules or large biomolecules) and the physical state of the 
sample {crystal, liquid or gas). Among the various possible methods, two emerge 
in the field with which we are concerned regarding mainly medium-size {drugs} 
or large (biomolecule) organic systems, and deserve a brief presentation here: 
X-ray diffraction and NMR. Other approaches {neutron or electron diffraction, 
microwave or far infrared spectroscopiesl are of very limited use in the field. 

Although in fact restricted to crystalline samples, structure analysis using 
X-ray diffraction has become an essential tool in the investigation of molecular 
geometry, probably owing to its wide applicability to small or large molecules 
{proteins}. Improvement of experimental devices, and increased computer 
capabilities {largely reducing the time necessary to "solve" a structure), rapidly 
yield a huge and exponentially growing amount of data. Faced with the large 
number of atom coordinates now available, computer-based files appear to be 
the only practical (and virtually indispensable} tool to store and broadcast the 
structural information. To manage efficient access to these large files, and to 
make them available to the scientific community, large efforts have been 
devoted to building extensive and reliable databases which are now standard 
sources for molecular geometry information. 

We will first briefly present experimental approaches {mainly X-ray 
diffraction and nuclear overhauser enhancemen t -  N O E -  measurements in 
NMRI before some introductory comments on the crystallographic Cambridge 
and Brookhaven databases. 

4.1 CRYSTALS AND X-RAY DIFFRACTION 

4.1.1. Crystal lattice 

Crystal state is characterized by the fact that the crystal components (atoms, 
molecules or ionsl tend to pack together as closely as possible, and 
consequently arrange themselves periodically in a three-dimensional ordered 
array where the environment of each unit is identical. This arrangement, the 
crystal lattice, can be described as the packing of identical elementary units, 
each containing the same constituents (one or more atom, ion or molecule) in 
an identical position. In the repetition of such a unit cell by translations along 
three directions of the space to generate the whole crystal, the translation 
vectors, their modules a, b, c and angles between them (~,~,71 define the 
crystallographic axes and the size of the elementary cell. For easier 
representation, we consider the constitutuent elements as points, and use a 
lattice of points as a picture of the actual crystal (Figure 4.1). 
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Figure 4.1 The crystal lattice can be considered as being generated by repetition of a 
unit cell. 

To fill the whole space without leaving gaps by packing identical blocks, 
only certain shapes are allowed (let us recall, for instance, that in 2D a regular 
pavement cannot be obtained with pentagonal blocks). Symmetry 
considerations show that only seven different shapes of unit cell can match. 
They are known as the crystal systems (Figure 4.2). 

For any crystal lattice it is always possible to define a primitive triclinic cell, 
containing only one motif (in fact, one motif per corner shared between eight 
adjacent cells). However, to better display the symmetry of the edifice, 
possibly hidden when considering primitive cells, it is often more convenient 
to choose non-primitive cells, i.e. cells of greater dimensions and containing 
more than one motif: body centred with one extra lattice point at the centre of 
the cell, side centred with two extra points on one pair of opposite faces, face 
centred with extra points on all faces. These various possibilities define 14 
Bravais lattices within the seven crystal systems (Figure 4.3). It must be noted 
that the choice of a Bravais lattice is not always unique for a given crystal 
(although some conventions are accepted), and that this choice does not 
modify the interpretation of X-ray scattering experiments. In addition, one can 
also distinguish 32 crystal classes related to symmetry within the unit cell: for 
the nomenclature of the 32 crystallographic point groups, see, for instance 
Wheatley [2] and Dean [3]. 

Special interest is devoted to planes containing a high density of lattice 
points, because these points (in fact atoms or molecules in the actual crystal) 
are the scattering centres in X-ray diffraction studies. 

Given the geometrical parameters of the unit cell, one can gather sets of 
parallel planes into families. Each family is defined by the intersections of 
one plane of the family with the three crystallographic axes. They 
correspond to three multiples of the cell parameters a, b, c. To describe the 
orientation of the family of planes, we can retain integers proportional to the 
reciprocal of these multiples: so are defined the Miller indices. Miller indices 
characterize the orientation of a family of planes, and from them the 
equidistance between successive planes of the family can be easily derived 
(Figure 4.4). 
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Figure 4.2 T h e  s even  crys ta l  s y s t e m s .  For the  co r r e spond i ng  group  s y m m e t r y  see 
W h e a t l e y  [2, p. 18 and  102]. ( a )Tr ic l in ic ;  ( b ) m o n o c l i n i c ;  ( c ) o r t h o r o m b i c ;  (d) t r igonal  
( r h o m b o h e d r a l  axes}; ( e ) t r i g o n a l  (hexagona l  axes} hexagona l ;  ( f ) t e t r agona l ;  (g )cubic .  
F r o m  W h e a t l e y  [2] w i t h  pe rmi s s ion .  



CRYSTALS AND X-RAY DIFFRACTION 85 

(a) P P (b) C ~  

, . , , .  v v v 

P C / F (c) 

R p 
(d) (e) (f) 

/ 

P I F 

(g) 

Figure 4.3 The 14 Bravais lattices. (a) Triclinic; (b) monoclinic; (c) orthrombic; (d) 
trigonal (rhombohedral axes); (e)trigonal (hexagonal axes)hexagonal; (f)tetragonal; (g) 
cubic (from Wheatley with permission [2] p. 106). 

4.1.2 Bragg equation 

We now consider the interaction between a crystal lattice and an X-ray beam. 
The energy absorbed by the atoms is reemitted in all directions. Owing to the 
comparable magnitude for the wavelength of the incoming radiation and the 
periodicity of the lattice, the waves diffracted by the various atoms may build 
an interference pattern. In the Bragg approach, beams diffracted from lattice 
nodes can be considered as beams reflected by a family of lattice planes. Only 
for certain incidence angles can reflected beams reinforce each other, giving 
rise to sizable intensity, according to the Bragg relationship: 

nk=2dsinO 
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Figure 4.4 Identifying lattice planes by Miller indices: 2D schematization (B axis is 
supposed perpendicular to the figure). For plane P1 the intercepts with the crystal axes 
are 2(A), oo (B) and 4(C). Taking the reciprocals and multiplying them by the lowest 
factor to get integers (4), we obtain for the Miller indices (hkl) 201. Similarly, for P2 the 
Miller indices are 100. 

wavelength of the radiation. The integer n corresponds to the order of 
diffraction, (90-0)is the angle of incidence of the X-rays and d is the spacing 
between adjacent lattice planes in the family (Figure 4.5). 

This fundamental relationship shows that X-ray reflection is selective, and 
occurs only for some discrete incidence angles. In a diffraction experiment, 
where X-rays of a given wavelength interact with a crystal lattice, each 
family of planes gives rise to a reflected beam in a direction corresponding to 
the Bragg angle, and depending upon the interplanar spacing. As there are 
many families of lattice planes, the diffraction pattern (as observed on a 
photographic plate) is composed of a large number of discrete spots 
(corresponding to the directions where the Bragg condition is met for one 
family of planes). Conversely (given the X-ray wavelength), measuring the 
Bragg angles from the location of the spots allows for determining the 

V Id  

Figure 4.5 Reflection from a family of equispaced lattice planes. Parallel rays reflected 
from the same plane are in phase; parallel rays reflected from two partially-reflecting 
planes are in phase only when the path difference is a multiple of the wavelength (Bragg 
relation). The components of the path difference are shown by bold lines. 
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spacing of lattice planes, and gives access to the size of the repeat unit (the 
unit cell)in the crystal. 

4.1.3 Structure factor and electron densities 

Intensities of the spots are another interesting factor, since they allow for 
determining atom positions within the unit cell (expressed as a fraction of the 
repeat unit). 

X-ray scattering is almost entirely due to external electrons, and the 
intensity of the scattered radiation depends upon the electron distribution 
within the atoms. The amplitude of the wave scattered by an atom is called the 
a tomic  scattering factor f. At small angles of diffraction {0 # 0}, f is equal to the 
atomic number (possibly minus the charge for ions), but for larger angles f is 
reduced because of interferences between the different scattered rays. 

Going now to a molecule, to evaluate the amplitude of the wave diffracted 
by atoms of planes hk l  (or according to Bragg presentation, reflected by planes 
hkl), we have to combine the waves diffracted by the individual atoms. The 
resulting amplitude is given by the structure factor F [4] ~. For a plane hk l  
passing through atom j (of fractional coordinate x~.y,, zj.) and a parallel plane 
passing through the origin: 

N 

Fh~ ~ = E f  / exp(2ni(hx, + ky,  + lz/)) 
J 

fj represents the scattering factor (at the value of (sin 0/K) for atom j whose 
fractional coordinates are x, y, z/in the unit cell: 

x y 
x~ ; y~ = 

a b 

Except for some particular cases (cubic crystal, for instance), F is a complex 
number characterized by an amplitude and a phase. 

In fact, electrons are not strictly localized, and we have to consider 
explicitly their distribution in space, characterized by an electron density 
function ~t(x, y, z): number of electrons in the element of volume dv at point 
(x, y, z). The structure factor (amplitude of the wave diffracted by dv is 
therefore: 

N 

F~, = E Y~ ~tf~ exp (2ni(hx/a + k y / b  + lz/c))dv 
j=l 

Taking into acount some correction factor related to the geometry of the measurement device, 
absorption of the X-ray beam by the crystal, etc. 
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So. the structure factor F and the density of scattering elements (in fact. the 
electron density) are linked via a Fourier transformation, and we can write: 

,(x, y,z) = (1 / V)~yy F~ exp -(2ni(hx/a + ky /b  + lz/c))dv 

or using only a discrete summation: 

,(x. y.z)= ( 1 / N V ) Z  Z Z F.k' exp-(2ni(hx/a + ky /b  + lz/c)) 

where NV is the volume of the entire array considered NV being the volume of 
the unit cell [5, p. 719]. 

Electron density could therefore be calculated if the cell parameters and the 
structure factor for a sufficient number of h,k,1 values {i.e. beams diffracted by 
different families of planes) are known. From electron densities g(x,y,z) 
calculated for various x,y,z points of the cell (generally on the nodes of a gridl, 
a density map can be drawn, where peaks indicate the location of the atoms. 

Solving a structure by X-ray diffraction can therefore be formulated as Given 
the intensities of the diffracted beam, determine the positions of the atoms. 
The trouble is that the only attainable quantity is the intensity of the 
diffracted beam, proportional to the square of the amplitude [4]. This 
fundamental difficulty is known as the phase problem. In other words, the 
amplitudes of the diffracted beams are known but not their relative phases, and 
so we cannot combine them to get the electron density map. Among the main 
methods used to help in solving the phase problem, we note [4]: 

Use of a good trial structure obtained via a "Patterson synthesis". It uses a 
similar Fourier series but with intensities rather than amplitudes. The result is 
a map giving not the actual atomic positions, but the vector distances of 
individual atoms {all translated to a common originl. This method is very 
convenient when the structure contains heavy atoms (Z > 25j for which the 
scattered intensity is important. 

When a pair of isomorphous crystals (differing by one atom) can be studied, 
differences in structure factors selectively reflect the contribution of the 
differing atoms. 

In the direct method, no structural information has to be input. The criterion 
is that electron density cannot be negative. This electron density is obtained 
from summation of waves of frequency (h,k,ll and amplitudes varying from -F 
to +F. Their phase angle has to be adjusted so that the best map is obtained. 

Once a chemically plausible trial molecular structure is obtained, a 
refinement step is performed to flatten the differences between experimental 
data and calculated structure factors. This can be done using least squares 
procedures or difference synthesis (working on the difference between 
observed and calculated F), which allows for adjustments of the position of 
heavy atoms and location of hydrogens. 

The quality of the proposed structure is generally expressed through a 
reliability index, the residual factor R: 
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where indices o and c refer to observed (respectively calculated)values, and the 
summation is over all h,k,I reflections. 

For a random distribution R would be 0.586 for a non-centrosymmetric 
structure (and 0.828 if a centre of symmetry  exists). R of about 0.4 is correct for 
a trial solution. Values of about 0.05 are now considered as good for a refined 
structure, whereas higher values correspond to partially incorrect structures or 
to less precise determinations. R = 0.25 suggests that atoms are correctly 
located within about 0.1 h [5, p. 763]. 

What precision may be attainable to fix the atom location in a crystal? 

�9 First, as ~t is calculated from a finite Fourier summation,  it is clear that the 
more h,k,] reflections are considered, the more details in the crystal 
organization would be derived (this is similar to truncation effects in Fourier 
IR or NMR spectroscopies). Resolution is therefore increased if high 
scattering angles are considered, but the number  of data to process increases 
very rapidly: Cantor and Schimmel [5] quote the example of a 
macromolecule with a cell of about 150 000 A 3 (linear dimensions about 50 
A): going from a 4 to 1 h resolution implies treating from 1200 to 75 800 
diffraction spots [5, p. 752]. 

�9 Another important feature is that hydrogen atoms are difficult to locate 
(accuracy is often limited to 0.1 A). This is a result of the fact that X-ray 
scattering is almost entirely due to electrons (the scattering factor varies 
roughly as the atomic number Z), and so is largely greater for heavy atoms 
than for hydrogen. Computer programs exist for automatically adding 
hydrogen atoms to structures when crystallographic data do not specify 
their location (by means of a table of standardized bond lengths)[3]. 

�9 Other limitations come from the wavelength of the X-ray radiation, the 
quality of the crystal (disorder) and mainly thermal motion of atoms: 
atomic displacements of ca. 0.05 ]k are not unusual at room temperature 
for organic molecules. This can lead to an apparent shortening of bond 
lengths up to several hundredths of an ]~ unit. 

Small molecules are generally analysed with a resolution of about 1 h (where 
each atom is clearly distinct). For macromolecules, the resolution is seldom 
better than 1.5 A: however, a resolution of 2.5 ,~ still allows for seeing the 
protein side chains or salient groups (such as carbonyls) of peptide moieties. 

4.2 NEUTRON SCATTERING AND MISCELLANEOUS TECHNIQUES 

4.2.1 Neutron scattering 

Although not so common as X-ray experiments, neutron diffraction studies 
can give comparable (and often complementa ry) in format ion  [2,6]. Small 
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elementary particles (such as neutrons or electrons) may exhibit behaviour 
comparable to transverse electromagnetic waves. The associated wavelength 
depends upon their energy according to the de Broglie relation: 

X = h / m v  

where m is the mass of the particle and v its velocity. If the wavelength is of a 
magnitude comparable to interatomic distances, diffraction effects from the 
atom arrangements in crystals or molecules are to be expected, similar to those 
observed in X-ray diffraction studies. 

Nuclear reactors are the common neutron source: fast neutrons generated 
during fission can be slowed down by collision with atoms of a moderator in a 
pile. So, one can get a beam of thermal neutrons corresponding to associated 
wavelengths of about 1/It; that is a convenient value for molecular diffraction 
studies. 

The root mean square velocity of the neutrons produced in a pile of 
temperature T is given by: 

v -  ( 3 k t / M )  ~ 

{M = mass of the neutron}, or according to the de Broglie relation: 

k - h / ( 3 M k T )  ~ 

This corresponds to k = 1.33 tit at 100~ A monochromatic beam (necessary for 
diffraction experiments} can be generated by filtering using a Bragg reflection 
over a large single crystal: this allows for selecting a rather small band of 
wavelengths from the incident beam. 

Unlike X-rays, which are mainly scattered by electrons, neutrons are 
diffracted by nuclei. Neutron scattering factors are roughly independent of 
both the nature of the atom (within a factor of 2 or 3) and the scattering angle. 
As a consequence, hydrogen atoms, which are difficult to cope with in X-ray 
experiments, are now easily located with an accuracy comparable to that of 
other elements (ca. 0.001 A). Absorption of neutrons is generally quite weak 
(because of their electrical neutrality} and, unless an exception, does not 
require careful corrections. 

However, some disadvantages as compared to X-rays do exist: neutrons are 
available from only few centres, in contrast to the more ancillary and 
widespread X-ray instruments. Larger crystals are required (ca. 4 mm ~ or 5 mg 
in place of 0.01 mm 3 or 0.01 mg for X-rays), and data collection times (typically 
a few weeks) are much longer, since neutron beams are weak as compared to 
X-ray beams from usual devices. Detectors (only counters and not 
photographic films) are low in resolution (owing to the size of the beam)and 
need to be efficiently shielded against parasite radiations. 

Location of hydrogens is, of course, quite interesting, particularly regarding 
the paramount importance of hydrogen bonds in the conformational preferences 
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of biomolecules and in the stabilization of their complexes with drugs or ligands 
[7, 7a, 7b]. Nevertheless, as a counterpart, the number of unknown parameters 
increases, and there may even be a need for deuteration in more complex situations. 

Some other methods (particularly electron diffraction and microwave or far 
infrared spectroscopies) are able to give access to geometrical parameters. 
Although they can attain very high accuracy, their use is restricted to small 
molecules, and so is of limited interest for direct application in the scope of this 
book. However, it must be recalled that precise geometrical information is of 
prime importance in various fields of molecular modelling: defining structural 
primitives for model builders, identifying geometrical distortions characteristic 
of specific structural arrangements, setting parameters in empirical force field 
methods for fragments or bonds not yet considered, and so on. 

4.2.2 Electron diffraction 

As for neutrons, diffraction experiments can be carried out with electron 
beams. According to the de Broglie relation, for an acceleration voltage of 40 
kV, the associated wavelength is about 0.06 A, small enough with respect to 
interatomic distances to generate diffraction patterns. Although some results 
have been reported on solid samples (mainly for surface studies), typical 
experiments are performed on gas phase. Diffraction therefore occurs from 
randomly oriented molecules. A further difficulty results from the fact that the 
diffraction pattern is the summation of coherent molecular scattering (the 
only one of interest for the derivation of molecular geometry) and atomic (both 
coherent and incoherent) scattering, which complicates the analysis [2,8]. 

Until now, diffraction experiments which can attain very high accuracy (few 
thousandths of an A) have been restricted to small molecules (unless 
symmetry considerations reduce the number of parameters). 

4.2.3 Microwave spectroscopy 

The same is true for microwave spectroscopy, which seems up to now devoted 
to gas phase molecules less than 10 non-hydrogen atoms. The principle can be 
approached by the simpler'case of a diatomic molecule, where transitions 
between successive rotational levels ( J ~ J + l )  are given by: 

h v  -- A E,o, - 2hB(J+  1) 

where J is the rotational quantum number. Rotational constant B is related to 
the inertial moment I calculated by reference to the centre of mass, where xi is 
the distance of atom i (mass mi) from the centre of mass: 

B = h i 8  rc ~ I and I = m, Xl 2 "~ m~. x~. ~ 
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So, the internuclear distance can be calculated from the rotational frequencies 
observed. 

For a polyatomic molecule, the rotational spectrum (now located in the 
microwave region and no longer in the far infrared, as for lighter diatomic 
moleculesl allows determination of the three principal moments of inertia of 
the molecule. This is generally not sufficient to derive all the interatomic 
distances involved, but this difficulty can be overcome thanks to isotopic 
substitutions {changing the mass of the nuclei does not modify the 
internuclear distances, but changes the inertial moments and the spacing of 
rotational lines). Even for smaller molecules (the only ones that can be 
studiedl, the synthesis and computational efforts are important, but high 
accuracy can be obtained. 

4.2.4 Comment  on distances from various techniques 

Although molecular graphics applications generally do not require the 
precision attainable by some of the above techniques, it may be useful to 
specify that, what is called "interatomic distance" does not actually always 
represent the same thing, and that minute differences appear from one 
approach to another [9]. Although very small, such variations may be 
confusing when discussing structural distortions from data of various origins. 
Such minute analyses are, however, obviously restricted to the smaller 
molecular systems, where various approaches could be carried out to 
determine the molecular geometry. In particular, it must be noticed that X- 
ray diffraction experiments "yield values which refer to distances between 
centres of electron densities, which need not correspond exactly to the 
positions of the nuclei, and yield only rather imprecise hydrogen positions 
whereas neutron diffraction values refer to distances between positions of the 
nuclei, which are accurate even for hydrogen" [10]. 

4.3 NMR: A SOURCE OF GEOMETRICAL DATA IN SOLUTION 

X-ray crystallography has long remained the privileged [and often the only} 
way in which to get molecular geometries from solid samples, hence comes 
the success and widespread use of crystallographic databases such as the 
Cambridge Database or the Brookhaven Protein Data Bank, which still 
constitute the main source of information for geometrical data about organic 
substrates and proteins. However, since 1978 a new approach was being 
developed using NMR data, and taking advantage of the spectacular 
developments of this technique. Improvements of NMR equipment now 
deliver, on commercial spectrometers (using high magnetic fieldsl, working 
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frequencies of 500 and 600 MHz [for 'H), in place of the 60 MHz during the 
1960s, dramatically increasing sensitivity. The Fourier transform, and new 
pulse sequences particularly regarding 2D [and more recently 3D and 4D) 
NMR offer extended capabilities [11]. The role of NMR as a source of 
geometrical data has grown rapidly and this approach now provides new 
avenues for determining stereochemistry and interatomic distances. The 
NMR approach has become an indispensable tool in the determination of the 
3D structures of proteins in solution (this important field of application will be 
detailed in Chapter 13}, that of conformational forms of DNA etc. 

Although not comprehensive, NMR-derived information is, nevertheless, of 
prime interest, since it directly concerns molecules in solution, that is in 
conformations which may be assumed to be not so far from that adopted in the 
living media. Indeed, if there are numerous cases where the crystal structure of 
proteins well fits measurements in solution (indicating that side chains in the 
interior of the molecule were locked in a rigid position), other examples showed 
large differences between crystal and solution [12-14]. At last, whereas crystal 
structure provides static representations, NMR gives access to some dynamic 
information. It is able to reflect both low frequency exchange processes or at 
the molecular scale much faster motions {about to the picosecond} in the solu- 
tion {see Chapter 13). Some reviews on NMR structural studies and the dynamics 
of solid-state bio-macromolecules have also recently appeared [15, 16]. 

In the tremendous advances attained during the last few years, the Nuclear 
Overhauser Effect [NOE) deserves special interest in view of its outstanding 
role [13,17] in 3D structure determination, and the great efficiency offered for 
its measurement by 2D NMR. A single NOESY (Nuclear Overhauser 
Enhancement SpectroscopY} experiment indicates spatial proximities between 
individually assigned H atoms, and provides a network of H-H distances 
which spans the entire biomolecule under investigation. 

Although NOE is more widely used, other NMR information may also give 
supplementary insight about the spatial location of atoms, particularly in the 
protein field. 

Identifying internal H-bonds in polypeptides may be derived from amide- 
proton exchange rates: the exchange is slow for protons involved in H-bonds or 
buried in the internal part of the protein. Torsion angles may be estimated 
from J coupling constants in Karplus-Pople type laws {Figure 4.6). For instance, 
in proteins, NH-C~H couplings give dihedral angle restraints from ~J~. This, 
plus energy considerations, constrains the backbone torsion angle ~ to values 
between -80 and -160 ~ for residues where ~J > 8 Hz and -60 to +40 ~ if ~! < 5.5 
Hz [18]. {For other examples, see also Moore et al. [19].1 

4.3.1 Nuclear Overhauser Enhancement and 2D NMR 

NOE corresponds to a selective fractional enhancement of a given NMR line 
by the irradiation of another resonance in dipolar coupled spin systems [20]. 
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Figure 4.6 Karplus curve for V.~a coupling vs. the torsion angle H-N-Ca-H (0) for an 
amino acid residue (see Chapter 13). For L amino acids, 0 - 14> - 601, 4> being the torsion 
angle around the C~-N bond. 4> - 180 ~ for an s-trans arrangement of the main chain. 

For sensitivity reasons, here we will only consider interactions between 
protons. However, 3D and 4D heteronuclear experiments were recently 
proposed using '~C and 'SN labelled compounds to extend the capabilities. NOE 
is a consequence of the effects of dipole-dipole relaxation on the spin 
population of the individual nuclei, and it suffers the strong distance- 
dependence of the cross relaxation rates among proton pairs. Indeed, the 
intensity of the NOE enhancement depends upon the distance between 
interacting nuclei (r) and an effective correlation time (~) for rotational motion 
of the vector between the nuclei [20]: 

In practice, NOE enhancements will therefore be observed only for protons 
in close spatial proximity (< 5 A), and the preceding relationship offers a way in 
which to estimate interproton distances [21, 22]. 

NOE and distance determination 

For small, roughly spherical proteins (MW about 6000), only tumbling 
motions are important. NOE between protons can be observed for sites distant 
by less than 4-5/1 (otherwise the effect is below the common detection level). 
Besides instrumental limitations (due to the poor sensitivity of NOESY 
experiments), dynamic factors introduce intrinsic limits for interpreting 
NOEs. 

Motions on the picosecond timescale introduce averaging effects that 
decrease the cross relaxation rate, and consequently the NOE, by a scale factor 
relative to rigid models [23]. However, because of the ~ term, motional errors 
of a factor of 2 lead to only a 12% uncertainty in the distances [23]. Internal 
calibration (by reference to pairs of protons whose distances are known)may 
overcome this difficulty. However, some caution must be exercised with 
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specific NOEs altered by internal motions: local mobility influences the 
correlation time, which may not be considered as uniform over all the 
molecule. For example, in the external regions of proteins, peripheral segments 
of side chains may undergo rapid local motions which quench the NOE. For 
this reason, only identified NOEs are considered (absence is not viewed as 
characteristic of long distances, since it may be due to local mobility). In any 
event, NOE experiments are better considered as giving a network of distance 
extremes rather than exact values. 

In a "uniform averaging model", NOEs are classified as strong (associated with 
interproton distances less than 2.5 h), medium (between 2.5 and 3.0 A) and weak 
(for distances less than 5 A)-  recall that a minimum distance for two hydrogen 
atoms is given by the sum of their van der Waals radii, about 2.0 A. 

N O E  m e a s u r e m e n t s  and  2D N M R  spec t roscopy  

Although most of the data needed have first been investigated through usual 
[one-dimensional) NMR, 2D sequences correspond to definite improvement, 
and prompted the development of practical distance determination via NMR, 
leading to efficient protein structure assignments in about 1977 (20 years after 
the first report of a protein NMR spectrum}. One advantage results from 
improved resolution spreading the resonances over a plane rather than along 
an axis. Indeed, for complex molecules, resonance peaks may overlap and some 
broadening may occur due to molecular motions slower than in small 
molecules. Another main advantage of 2D spectra is efficiency, since a single 
experiment gives all spin-spin interactions in the entire molecule. 

In a conventional (1D) NMR, the spin system is first submitted to a RF pulse. 
Immediately, or after a given delay, the free induction decay is recorded with 
time M(t~), and then Fourier transformed to yield a signal in the frequency 
domain, giving the usual spectrum display S(f~). 

In a 2D experiment, the signal is not recorded immediately after the 
preparation time (during which the spin system is submitted to a sequence of 
RF pulses), but only after a delay called the "evolution time (t~)" and a "mixing 
period" according to the scheme: 

preparation, evolution (t,), mixing, detection (t~) 

A set of measurements is carried out where this evolution time is 
sequentially incremented: so two time domains (t~ and t~), are acquired in a 
single experiment. The data matrix obtained in such multipulse experiments, 
M(t~,t~}, is Fourier transformed in one dimension, transposed and transformed 
with respect to the second time variable (the second dimension) to yield a grid 
of resonance intensities vs. two frequencies, f~ and f~. 

Typically, in a 2D spectrum, diagonal peaks correspond mainly to the 
conventional (one dimension) spectrum, and display the positions of the 
resonance lines. Cross peaks establish correlation between diagonal peaks [24]: 
these cross peaks determine nuclei interconnected by some interaction. For 
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NOESY, such interactions involve a mutual dipolar relaxation pathway, a 
through-space mechanism, our main concern here. Other pulse sequences 
concern spin coupling. They correspond to through-bond mechanisms. In COSY 
(COrrelation SpectroscopY), cross peaks reflect scalar spin-spin couplings 
between protons separated generally by no more than three bonds (to get 
appreciable coupling). HETCOR (HETeronuclear chemical shift CORrelation) 
specifies direct IH-'3C connectivity. A second type of 2D experiment separates 
chemical shifts and couplings along the two axes [13,24,25]. 

Typically, a NOESY spectrum contains a large number (about 100)of cross 
peaks which express Nuclear Overhauser Enhancement, and indicate a close 
proximity (d < 5 /~) in the 3D space. Such stringent constraints on the 
conformation can be used in modelling programs to derive the 3D structure. 
(For a simple example, see Chapter 13, p. 417.) 

H H 

COSY [ [ Scalar I coupling 
C C/N 

RELAY 
H H H 

I I I 
C ~ C  C/N 

Relayed J coupling 

NOESY 
H H 

I I 
C/N C/N 

Spatial proximity 

(Correlated protons are indicated by bold letters.) 
For example, in solving protein structures, valuable information regarding 

the sequence of amino acids in the chain is sought by examining NOESY 
through-space proximity between ~CH, and NH,~,~:d~N distance, and/or 
between NH, and NH,+,~ : dNN distance (Figure 4.7). 

I 
H ~  C~~ 0 

I II 
N ~ C o t ~  C ~  N+I 

I I 
H . H --~._ H 

~ ~  dNN . . . . .  

Figure 4.7 Determining the amino acids in a polypeptide. The spin set for each amino 
acid is established through C,,H, NH coupling (COSY) and possibly by C,~H, NH 
correlation (RELAY) shown by dotted lines. The sequence is attainable with NOESY 
experiments (distances dan and dN~, shown by full lines). 
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In a first step, the constituent amino acids present in a polypeptide chain can 
be identified by COSY spectra, since for the 20 naturally occurring amino 
acids, COSY connectivity patterns (protons within three bonds of each other) 
are quite characteristic. Also of great help in this step is RELAYED COSY 
(relayed coherence transfer). The J connectivity possessed by two spins A and 
M is passed to X (through A M  and MX couplings) even though A and X are not 
scalar coupled. For example, in threonine, COSY peaks indicate 3j normal 
connectivity between aH and the ~H, and between ~H and ~K2H3. In RELAYED 
COSY a cross peak exists between this ~ H 3  and aH (through their common 
coupling to ~H). The intensity of the RELAY cross peaks depends upon the J 
coupling creating the original coherence, and also on the coupling through 
which it is transferred. It is therefore possible to optimize the experiment for 
better identifying selected amino acids (Figure 4.8). The more recent TOCSY 
sequence (transfer of magnetization through 3j coupling between NH, C~t-Ii, 
C~-I, C~H and C~I, C~I-t directly gives the entire spin system for each residue). 

(a) 

H H 0 

I I I I  
N C o l ~  C ~  

I 
H C/3 ~ O H  

I 
CH3 

Thr "~CH3 / 

A3MX 

~a (b 

. . . . . . . . . . . . . . . . . . . . .  i 

(b) 

Figure 4.8 J-connectivity pattern from 2D NMR spectroscopy. COSY (o) and 
RELAYED COSY (A) crosspeaks for the non-exchangeable protons of the threonine 
residue. Spectra run in D20 (from Abraham et al. with permission [25]). 

4.3.2. NOE and model  building 

On account of its strong distance dependence, NOE tells us nothing about 
long-range information, and a direct biomolecule-structure determination is 
not possible without the help of some other knowledge (for example, in the 
protein field, indication of the motifs constituting the chain). One can also 
introduce additional information provided by empirical energy functions [23, 
26]. 

Generally, NMR-derived constraints are incorporated into the usual 
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methods, where they appear to be of definite help, as shown with distance 
geometry approaches [24] or molecular dynamics simulations [27] -  these 
methods have been discussed elsewhere, and only few examples will be given. 
NMR information was also introduced for exploring the cordormational space 
of cyclic molecules [28] or proposed as a pseudo-energy term in molecular 
mechanics [29]. The principle is to introduce in the calculation some 
supplementary penalty terms: they tend to destabilize any geometry where the 
calculated distance between two protons is different from the value assumed 
on the basis of NOE effects. For instance, in the model of Tonge et al. [34], a 
conformation where distances deviate by more than 1% of a given NOE 
constraint is penalized by about 2 kcal/molL 

Polypep t ides  and  pro te ins  

As an example of the utility of NMR-derived interproton distances, one can 
note the test carried out by Havel and Wiithrich [30] on a small protein (58 
amino acid residues] a basic pancreatic trypsin inhibitor (BPTI} of known 
crystal structure [31 ]. Experimental data correspond to 73 strong, 135 medium 
and 299 weak NOEs. These distance constraints have been introduced in a 
distance geometry approach, where the complete embedding process is 
decomposed into two successive, more tractable, calculations on "sub- 
structures". The authors were able to reproduce the crystal structure within 
1.3 )k root mean square coordinate difference for the backbone atoms. 

Similarly, the structure of the small protein Crambin was searched for, 
introducing 240 interproton distances less than 4/It in a molecular dynamics 
simulation. Calculations from different starting structures converge to the 
known c~sta l  structure, with rms deviations of 1.3 ttt for the backbone atoms 
and 1.9 A for the side-chain atoms [23, 32]. For other examples, see for 
instance, Lautz et al. [33] where molecular dynamics simulations were used to 
study the immunosuppressive drug cyclosporin A, either as an isolated 
molecule in solution, or in a set of four crystal cells embedding 16 cyclosporin 
A and 22 water molecules {introducing in the calculation crystalline periodic- 
boundary conditions}. Interestingly, this study points out significant 
conformational differences between crystal and apolar solution. 

NMR constraints were also used for traversing the conformational space of 
cyclic molecules [28]. This has been illustrated recently using the example of a 
cyclic decapeptide tyrocidine A {presumed as existing in solution as a single 
conformation] [34]. The strategy is detailed in Chapter 7. It first involves 
splitting the molecule into two open halves {terminated by a pair of common 
overlapping terminal groupsl. Then, examination of the cortformational space 
available for each individual part {taking into account MM and NOE 
requirements} is carried out using a penalty function on NOE constraints. 

2 The penalty function is: E(NOEJkca/mol = K X (R-Ro)2/Ro s with K = 800/RA. 
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Finally, a few representative conformers of each of the halves are assembled by 
superimposition of common terminal atoms and classified. Adding side chains 
and minimizing energy give the proposed final structure. 

Conformational analysis of DNA 
Nucleic acids are key molecules in the storage and transmission of genetic 
information carried by chromosomes, and play a preeminent role in the 
cellular function of living organisms. Deoxyribonucleic acid (DNA) in solution 
is a flexible macromolecule composed of a series of nucleotide units: each one 
is formed by a phosphoryl group ensuring the junction with other units, a 
furanose ring (sugar) and one of the four bases: adenine, thymine, cytosine and 
guanine. Two polynucleotide chains, associated via hydrogen bonding between 
adequate bases, form the well-known double helix. 

The DNA strand may take several conformations, called A,B or Z. The A and 
B forms correspond to right-handed helices. A-form favours C3' endo 
puckering, whereas C2' endo puckering is associated with B-form. The other 
form; Z DNA (left handed helix), corresponds to sequences with alternating 
purines and pyrimidines. Two conformational parameters are of interest in the 
description of such units: the sugar pucker, corresponding to envelope or twist 
forms, and the glycosidic bond angle, leading to syn or anti conformations [35] 
(Figure 4.9). 

NOE can be used to identify and sequence DNA oligomers [35]. The analysis 
starts from the 5' nucleotide, which is the only one to bear only one NOE peak. 
The basic remark is that the Hi sugar proton is approximately equidistant (4A) 
from H~ or H6 of its own base (respectively, depending on whether the base is a 
purine or a pyrimidine), and the H8 or H6 of the 5' but not the 3' nucleotide. In 
right-handed DNA helices, the sugar H,,HdH~. give NOEs to Hs or H6 of the 3' 
neighbouring base, but not to the 5' one. In contrast, NOE occurs between 
thymidine methyl protons and HdH8 of the 5' residue, but not the 3' one [35]. 
Differentiation between A and B forms is readily achieved by comparing 
internucleotide and intranucleotide NOE between H~.and H8 or H6 [35]. 

In Z DNA (left-handed helix of alternating purines and pyrimidines), 
pyrimidines have an anti-configuration and C~. endo sugar pucker, purines a 
syn glycosidic bond and C3,endo sugar pucker. The NOE pattern is therefore 
very different, and is easily detected. Slow exchange between B and Z forms 
has also been characterized [35] (Figure 4.10). 

4.3.3 New trends and recent developments 

The determination of the actual 3D structure of a drug in its active 
conformation (that bound to its receptor) is of course a fascinating challenge 
for the design of novel active analogues. Recent improvements of NMR 
experiments now give promising avenues for the direct study of drug-receptor 



1OO ACCESS TO EXPERIMENTAL GEOMETRICAL PARAMETERS 

---" O - C H 2 / O ~ B A S E  

I 5' O=P--O- / " ~  CH2 0 BASE 
' 
0 

I 
0 
I 5' O~P--O-C~s O~BASE 
I 
0- 

' 

(a) 

[ 5' O-CH2 O BASE O--P--  / 
' 

O 
, 

I 
O 
I O=P-- 0-- 
I O- 

Purines 

(b) 

NH 2 

I H 
Ad(~nine 

0 

NH2 i 
Guanine 

Pyrimidines 

(c) 

(d) 

NH 2 

I H 

Cytosine 

O 
CH3 f~H 

o 
I H 

Thymine 

(e) 



NMR: A SOURCE OF GEOMETRICAL DATA IN SOLUTION 101 
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OH 

Figure 4.9 DNA structure analysis. (a) Polynucleotide chain~ (b) purines~ (c) 
pyrimidines~ (d), (e)twist and envelope conformations of a cyclopentane ring and anti 
(f) syn (g) conformers around the glycosidic bond here for desoxyadenosine (from 
Cheatham [35] with permission}. 

complexes: various methods have been proposed to simplify the complicated 
proton NMR spectra of large receptor-ligand complexes [36]. Identifying those 
portions of the ligand that interact with the target site, and determining their 
3D structure, are the main objectives of such studies. 
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F i g u r e  4.10 Differing proton-proton distances in (a) A form DNA (C3' endo sugar 
pucker) and (b} B form DNA (C2' endo sugar pucker)(from Cheatham with permission 
[35]). 
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The conformation of ligands weakly bound to a macromolecule and 
exchanging rapidly from bound to free state can be attained through 
transferred NOE. The method relies on the observation of NOEs between a 
target spin Ion the exchanging ligand) and several protons on a rigid part of the 
system. These values lead to a probability density to find the target spin in 
given regions of space that can be used as a starting point in a subsequent 
model building procedure. An application example of transferred NOE was 
presented on an inhibitor bound to cytidine-5'-monophosphate-3-desoxy-D- 
manno-octulosonate, (CMP-KDO)synthetase [36]. Such inhibitors may be of 
clinical use as antibiotics against Gram-negative bacteria {Figure 4.11 ). 

H" H'. 
\ /  

H o ~ H O ~ ~ H  8 

H s ~  I ~ 0 

H0 ~ "Hs" T H, 

O ~ o -  
Figure 4.11 Application example of transferred NOE (from Fesik with permission [36]). 

For the bound inhibitor, the sC2 conformation of the ring is established from 
the equal intensities of the NOE observed for protons pairs 2/3a and 2/3e, and 
the NOE between 4 and 3e. The side chain conformation is established from 
the NOE between protons 6/8 and 9t/7 and the low (or inexistent) NOE 
between 7/6, 7/5, 7/8 and 7/9c, [36]. 

However transferred NOE only applies to weakly bound and therefore 
rapidly exchanging ligands and not to the {more interesting) active inhibitors 
tightly bound to the enzyme [36]. 

Isotope-edited proton spectra 
Spectra run on deuterated species allow for eliminating proton peaks. 

Subtraction 2D NOE spectra of two drug-receptor complexes (one obtained 
with a protonated ligand, the other with a deuterated ligand) affords an easy 
way for differentiating NOEs within the ligand and NOEs between the ligand 
and the enzyme, providing structural information on the active site. The use 
of perdeuterated receptors has been also proposed for a rapid investigation of 
the bound conformations of the ligands. A selective detection of protons 
attached to isotopically labelled nuclei ('~C or ~SN)is also possible [36]. 
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Towards higher dimensions: 3D and 4D NMR 

For larger systems, chemical shift degeneracy, peak overlap and increased 
linewidths limit the interest of usual 2D sequences relying on small H-H 
couplings. One attractive solution to overcome these problems is provided by 
3D and 4D heteronuclear experiments [37]. Such developments seem very 
promising for extending the range of applicability of the NMR method to 
proteins in the 15-30 kDa range. Experiments are carried out on uniformly 
labelled (> 95%)1SN and/or ~3C substrates. 

Resolution is improved by increasing the dimensionality of the spectrum, 
since the proton resonances are now sorted along a third dimension: the cross 
peaks are spread into different planes according to the shifts of the heteroatoms 
(13C or lSN). Efficient magnetization transfer, ensured through large one-bond 
heteroatom-proton coupling, is less sensitive to linewidth influence. 
Furthermore, additional information can be gained through the shifts of these 
heteroatoms ~SN and '~C. This leads to a massive simplification in analysing 
the spectra. 

A classical 2D experiment processes a double Fourier transform on a data 
matrix where the data collected are a function of both a detection period (as in 
the 1D spectrum) and an (independently incremented) evolution period. 
Higher dimension (3D or 4D) NMR spectra are obtained by combining two or 
three 2D sequences. For example, in a 3D experiment, two evolution periods 
are incremented independently giving a data matrix s(t, t2,t~). 

Conventional 2D spectra try to identify NOE connectivities between 
adjacent residues involving NH, C~H and C~H protons. Similar data are 
obtained in a 3D experiment, except that the spectrum is spread out in a series 
of slices according to the ~SN or the ~3C shifts [37] (Figure 4.12). 

4.4 THE CAMBRIDGE STRUCTURAL DATABASE 

The continuous interest in structural information, coupled with a dramatic 
expansion of crystallographic data, prompts an increased interest in 
crystallographic databases [mainly the Cambridge and Brookhaven databases, 
which have become standards for organic materials and proteins}. The 
reliability and integrality of the data stored in these archives make such 
databases indispensable starting points, or essential components, of many 
molecular modelling applications. 

At this step, it seems important also to point out that, besides the resolution 
of individual cases {i.e. providing a suitable geometry for a given target}, storing 
geometrical information about a large set of structures provides new tools for 
structural investigation. Screening the database and carrying out statistical 
studies on selected candidates allows for detecting common trends, or 
conversely, attributing unusual behaviours to specific substructures or atom 
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Figure 4.12 From (a) 2D to (b} '~N edited 3D spectra, for NH/HC pairs. NOE cross 
peaks (dots} not differentiated along F, (NH) in a 2D NOESY experiment are separated 
and sorted according to 'SN shifts in a 3D experiment. Sorting can be pursued (in 4D) 
along '"C shifts of the attached carbon (adapted from Clore and Gronenborn with 
permission [37]). 

arrangements. Extracting dynamic information about interconversion or 
reaction pathways is also a spectacular application of such database screenings. 
As pointed out by Kennard [38}, "The whole is greater that the sum of parts". 

In this text, being largely devoted to modelling medium-size molecules 
(rather than large biomolecules), interest will be focused on the Cambridge 
Structural Database (CSD}. Established as early as 1965, the CSD stores 
information derived from X-ray {mainly) and neutron diffraction studies on 
organic, organometallic compounds and metal complexes. Some purely 
inorganic structures {carbides, carbonates, cyanates, etc. are not considered; 
nor are high molecular-weight polymers. Originally, proteins were also 
outside the field of the Cambridge database. Resulting from a recent agreemem 
with the producers of the Brookhaven Data Bank for proteins (PDB, see below). 
the Cambridge Structural Database now deliver bibliographies and sequence 
PDB entries. On the Cambridge October 1995 release, 3528 entries art 
available. 

The Cambridge Crystallographic Data Centre (CCDC)not  only produce~ 
and maintains the CSD database, but also ensures its distribution to academi, 
centres and industrial companies, develops software and performs its ow] 
research projects. Distribution to the academic community is performe, 
through "national affiliated centres", which contribute to the maintenance c 
the database by paying an annual national subvention. 

In October 1995, the CSD files contained about 146 000 structures, with a 
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update rate of about 20 000 new entries in the last year. More than half of the 
entries have been published since 1980, and correspond to an R factor (mean) 
of about 6%, characterizing high quality determinations. The consistency of 
the data is carefully checked, from the chemical name to the consistency of 
atomic positions, so errors are reduced down to 1.5 %, whereas it was indicated 
that nearly 16% of the original data submitted contained at least one error. The 
database gathers primary literature data, collected from over 500 journals and 
their supplementary materials, or originating directly from authors or from a 
depository [39-42]. 

4.4.1 Organization of the database 

The system is organized around a key module, the ASER database, and is 
provided with a set of modules for treatment,  statistical analysis or 
information display. 

In the ASER database, each entry is identified by a REFCODE, an eight-letter 
reference code, originally an acronym of the chemical name. NBS identifica- 
tion numbers (whenever cell parameters are given), or CAS registry numbers 
(unfortunately only for about 10% of all entries)are sometimes indicated. 

Three levels of information are managed: 

1. "One-dimensional" information gathers bibliographic data or textual 
comments.  

2. "Two dimensional" information describes the chemical structure (atom 
type and connectivity)and bond characteristics (nature, cyclicity). 

3. "Three-dimensional" information specifies the atom coordinates, the unit  
cell. These data are those used for molecular graphics representations or 
evaluation of molecular geometries. 

For almost 99% of entries, cell parameters and information about the 
connectivity of the chemical moieties within the crystal are given ("chemical 
connectivity"). Atomic coordinates are indicated for 85% of all entries. To 
make information more readily usable by chemists, these coordinates refer to 
the crystal chemical unit (a covalently bonded structure), and not to the 
crystallographic asymmetric unit (which is a structural motif)(Figure 4.13}. 

To manage an efficient exploitation, the ASER database stores three records 
for each entry: 

1. mandatory integers and bit screens. 
2. 2D chemical connectivity and text. 
3. 3D atomic coordinates and connections. 

Various strategies are available for 1D or 2D information searches. Queries 
may, of course, concern refcodes, author(s) or compound names, but one can 
also ask for chemical formulae or chemical classes (among 86 organic classes). 
Besides the identification of particular molecules, a highly interesting feature 
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Symmetry plane 

Figure 4.13 Crystal chemical unit and crystallographic unit: benzene molecule (only 
carbon atoms are shown). The complete molecule is generated from the asymmetric 
unit (bold linesl by the addition of symmetry-related atoms (from Kennard et  al. [39] 
with permission). 

for structural studies is the possibility of performing searches for chemical 
fragments {substructures], according to the nature of atoms, the existence and 
nature of bonds etc. Atoms can be hilly defined or within a given class {any 
metal, alkali metal, and so on}. 

The search query is defined by tests, screens or a combination of the two. A 
large variety of tests, defined by key words, can be selected, including 19 text 
and 38 integer-field types. Tests may be combined with logical operators 
(andlor/notl. The introduction of 682 bit screens appears very useful, allowing 
for saving a large percentage of the search time. Searches are more efficiently 
performed, comparing first screens generated from the query to the bit screens 
of the ASER base {created on the building of the base}. Candidates issued from 
this first selection are subsequently submitted to the more time-consuming 
step of in-depth searches (via atom by atom, bond by bond fragment matching). 
The 682 bit screens proposed, .generated as search keys, may ask for an organic 
material, an R factor smaller than a threshold value, an absolute configuration 
determination, etc. They can also select element groups, entry information, 
text screens or connectivity screens (the presence or not of 434 pre-defined 
subfragments). Tests based on elements, formulae, connectivity of special 
fragments or cell parameters are also provided. 

Large facilities are offered for the input and output thanks to the QUEST 
module, allowing for alphanumeric or graphic man/machine communication. 
Menu-driven graphics interfaces provide an easy, user-friendly access. Note 
that the 9.D edition causes some specific problems, and surprisingly appears 
more complex than 3D wire frame representations of the molecular 
framework. For 3D representations, the atom coordinates give a well-defined 
representation basis, and only limited choices have to be made about angles of 
vision, overall size, etc. By contrast, usual (9.DI drawings of structural formulae 
implicit|y obey some well-accepted conventions: a naphthalene molecule is 
always represented with the two rings side by side, and not one above the 
other. This means that no algorithm procedures can generate satisfactory 
graphics directly from connection tables for a wide range of compounds. To get 
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suitable graphics (implying some standardization in the presentation of 
chemical classes), coordinates relating to a backlog of 30 000 connection tables 
are inserted into the CSD files. 

Basically, the QUEST module carries out the following functions: 

�9 construct search queries, 
�9 display search results as text, summary tables, simple histograms or 

scattergrams, 
�9 permit manipulation of geometrical parameters, and 
�9 prepare subfiles for link with other modules (VISTA, PLUTO) or external 

software packages. 

Other modules (VISTA and PLUTO) process and represent the 3D information. 
VISTA ensures a wide variety of numerical, statistical and graphical analyses 
on the retrieved geometrical data. It calculates intra- and inter-molecular 
geometrical parameters and performs diverse processes based on these 
parameters (selection of fragments by geometrical criteria, tabulation of their 
geometry, output of coordinates, etc.). It also allows for 3D queries such as 
those involved in pharmacophoric-pattern search. In the treatment of these 
numerical multi-parameter features, statistical methods play an important 
role. Modules propose varied approaches of data analysis, including analysis of 
variance, principal component analysis and cluster analysis [43, 44]. 

The plotting package PLUTO is used to prepare, from the numerical files in 
CSD, a variety of 3D displays and illustrations of crystal and molecular 
structures. A single molecule or an assembly of molecules (packing diagram) 
can be represented under various styles of illustration: stick or ball-and-stick 
diagrams, space filling models, with some control capabilities about size, 
colour, rendering, and so on (Figure 4.14). 

Among the current developments are the integration and extension of the 
3D search capabilities, and improvement of the connectivity description. 
Indeed, the "crystallographic connectivity" representation lacks bond-type 
information and details on atomic charges explicited in the "chemical 
connectivity". The absence of some hydrogens in the reported crystal 
structure, the presence of more than one bonded residue in the crystal cell, 
etc., may constitute other sources of difficulty in the matching of these two 
representations [41 ]. 

4.4.2 Applications 

The CSD system, gathering extensive data files and user-friendly software, has 
become an important tool in many fields of chemistry. 3D information is, of 
course, an important starting point for the modelling of chemical systems or 
similarity searches between a set of related molecules. Nevertheless, an 
interesting feature is the ability to carry out systematic analysis via statistical 
treatments. These allow for "waking up the dormant information" that 
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Figure 4.14 General organization scheme of the Cambridge Structural Database 
(reproduced with permission from F.H. Allen). 

reveals, from the published data, some hindered information, underlying but 
not yet perceived. 

Systematic analysis of molecular geometry 

Mean geometries and model builder primitives 
X-ray structures of course represent solid-state conformations which are not 
necessarily identical either with those in solution, nor with the reactive species 
in a living organism {because of crystal packing, solvent effects or possible 
conformational changes during adaptation processes} [45]. However, knowing 
the crystal structure is a unique source for the easy construction of molecular 
models. Of course, it directly gives the answer for rigid substrates, but it is also 
of great help for flexible molecules where crystal structures provide a 
"reasonable" starting geometry which can be further refined. In model building 
calculations, standard bond lengths or angles can constitute a first set of input 
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data, but more realistic proposals can be attained from an average of the 
geometries observed experimentally. This approach thus provides structural 
fragments closer to reality, since more subtle environment effects, associated 
with specific structural frameworks, are taken into account. Assembling such 
predefined fragments speeds up the elaboration of complex systems. 

A first step consists of the determination of mean interatomic distances, 
depending upon the molecular environment in which the bond is embedded 
(Figure 4.15). Tables are now available gathering the average bond lengths 
involving the most common elements, corresponding to nearly 700 bond types 
[46]. 

For the derivation of fragment libraries, particularly for applications in 
molecular graphics, estimating average molecular dimensions, the Cambridge 
database can constitute a major source of data. However, estimated standard 
deviations on the atom coordinates are not quoted, and the scattering of the 
results encompasses both experimental errors and environment effects. 
Practical guidelines to derive the best average distances, depending upon the 
relative importance of these effects, have been proposed [47]. 

Nucleoside and nucleotide studies 
Besides a better estimate of bond lengths, depending upon their environment 
in the molecule under investigation, standardization of larger molecular 
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Figure 4.15 Distribution histogram of the C,,-N bond lengths in a C,r-N-(Csp3)2 
fragment. (a) Complete distribution; (b) (c) resolution into two subsets, (b) for planar 
nitrogen (mean valence angle at N > 117.5 ~ and (c) for pyramidal N {mean valence angle 
at N in the range 108-114 ~ (from Allen et  al. with permission [46]). 
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fragments, considered as molecular building bricks, have been outlined. Using 
a least square minimization procedure on nearly 90 crystal structures, Taylor 
and Kennard [48] proposed a set of orthogonal coordinates for nucleic acid 
residues as close as possible to the average dimensions observed in crystals 
subject to the necessity for ring closure. For these primitives, the residues are 
planar and the maximum discrepancies are no more than 0.001 A for bond 
lengths and 0.1 ~ for angles. An example is given in Figure 4.16 where the 
geometry is specified in internal coordinates (more easily perceived for a 
chemist than Cartesian values). Apart from model building, other applications 
may be the refinement of oligonucleotide structures or the parameterization of 
empirical force fields. 

NH 2 
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1.3.~ l ] ]  1.337 

t 
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Figure 4.16 
Kennard [48]}. 

NH 2 

l 
(214 3 

Average dimensions of the cytosine motif (A and degrees){Taylor and 

Systematic search for a given pharmacophore 
Screening of the CSD files has recently been used to derive putative ligands 
complementary in shape to a receptor site of a known structure, or to propose 
new ligands if a pharmacophore geometry is already established and the 
geometry of receptor-bound conformations of some ligands are known [49-51]. 
This point will be discussed in more detail in Chapter 12, dedicated to the 
pharmacophore approach. 

Systematic analysis of intramolecular interactions 
Apart from deriving more realistic geometries (either to be used directly or 
submitted to energy minimization), such systematic studies are essential for 
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fundamental approaches of structure and bonding. Often, effects are small and 
close to uncertainty limits of individual structure determinations. Statistical 
analysis on a large set of samples is therefore necessary to safely detect trends 
[42]. 

Large variations due to hybridization changes are well known: 

C C C ~  C C C ~  C : C C ~  

1.538 A 1.507 A 1.464 A 

but more subtle effects also modify bond lengths to a lesser extent. 
As a well-known example, one can note substituent-induced deformations 

in benzene rings, which have been widely documented. An electron- 
withdrawing substituent increases the ipso o~ angle and slightly decreases ~ by 
about one half of Act. Adjacent ~ bonds are shortened (opposite effects being 
observed with electron-donating groups). Statistical treatment through factor 
analysis rationalized the observations (more than 100 derivatives investigated) 
on the basis of two independent mechanisms involving 6 and n interactions 
[42, 52, 531 (Figure 4.17). 

Figure 4.17 Substituent-induced deformations in benzene rings. 

Hydrogen-bonding 
Hydrogen-bonding is involved in many chemical and biochemical processes 
(stabilization of drug-receptor complexes, anaesthesic properties, etc.)Analysis 
of the crystallographic environment of about 700 hydrogen atoms show that 
short (d < 2.4 A) C H . . .  O contacts (significantly lower than the sum of the van 
der Waals radii of H and O: 2.7 A) are not unusual in amino acid crystal 
structures. In contrast, short G H . . .  C or C H . . .  H contacts are extremely rare. 
So, it was established that C H . . .  O hydrogen-bonding may be a significant 
factor in determining the conformations and the crystal packing arrangement 
of amino acids, and also in stabilizing certain DNA-drug complexes [42]. 

Distribution of O . . .  H distances and O - H . . .  O angles have also been 
investigated in O - H . . .  O arrangements (from neutron diffraction data). The 
mean values are respectively, 1.818 A and 167.1 o, in good agreement with MO 
predictions. Shorter hydrogen bonds tend to be more linear than longer ones. In 
hydrogen-bonding to etheroxides, it appears that the proton is in the plane of 
the oxygen lone pairs, but with no privileged direction. In contrast, H-bonding 
to a sp ~ oxygen (in a carbonyl group, for instance) shows a definite directional 
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influence; the incoming hydrogen statistically prefers the region of the "rabbit 
ears" of the oxygen atom: 

O H 

Chemical dynamics from static crystal structures: structure 
correlation 

Extracting dynamic information from crystallographic data has been proposed 
as the "structure correlation method" by Burgi and Dunitz [54]. When a 
molecule is embedded in a crystal, it suffers forces from the crystal 
environment, which can more or less distort its geometry, so that its structure 
is not necessarily identical with the equilibrium structure attained for the 
isolated species, for instance in the gas phase. Similarly, the structure for a given 
molecular fragment depends to some extent upon the molecular environment 
in which the fragment is embedded, as well as on crystal lattice influences. 

Examining a large set of compounds containing a given fragment provides a 
series of snapshots of this fragment, each in a particular molecular 
environment. These data can be ordered so as to depict a gradual deformation 
of the fragment. In a "many-dimensional" conformational space (one 
dimension for each geometrical variable defining the substructure), each of 
these fragment geometries may be associated with a sample point. The basic 
hypothesis is that these interactions with the molecular or crystal 
environments may be considered as small perturbations to the total molecular 
potential energy. One may therefore reasonably expect that the sample points 
(corresponding to the structures observed)will tend to concentrate in the low- 
lying energy regions of the potential energy hypersurface. The distribution of 
sample points in the conformational space will thus delineate the shape of the 
energy valleys. It gives information about the preferred regions on this surface, 
and on the probable interconversion pathways between stable conformers (or 
even the energy profile of related chemical reactions). 

So, structure correlation method allows for mapping low-energy paths for 
stereoisomerization processes, and proposing an approximate structure for the 
transition state involved. 

One may question, however, what the scattergrams of experimental structural 
data actually represent? The fragments investigated are also submitted to 
environment effects from the molecule in which they are embedded. Their 
distribution therefore involves the structural constraints imposed (for instance, 
ring closure conditions may fix more or less rigidly some angle values). If such 
interactions are large, the scatter can be viewed as a response path and not 
strictly as a minimum-energy path. However, if the potential surface possesses 
narrow, steep-sided energy valleys, whatever the constraints may be, the sample 
points are more likely to indicate the minimum-energy pathway. 
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Conformational interconversions of anomeric systems 
The anomeric effect {observation that in sugars the percentage of axial 
conformers is greater than in the corresponding hydrocarbons) is related to the 
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F i g u r e  4.18 Interconversion pathways from crystallographic data of acyclic and cyclic 
fragments C-O-C-O-C. The lines outline clusters of sample points with their density. 
The "peripheral pathway" a,b,c,b',a' involves several steps: correlated disrotations (a-b 
and b'-a'), non-correlated ones (b-c and c-b'). The "lateral pathway" a,d,e,b"a" at first 
maintains the constancy of one angle �9 (a,d,e) and in a second step follows the above 
peripheral pathway (e,b",a")(from Coss6-Barbi and Dubois with permission [55]). 
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existence of two electronegative atoms in gem position on a single carbon. 
Analysis of 85 structures which have a common C - O - C - O - C  fragment was 
carried out in a conformational space built on two torsion angles .~ {C~O2C304) 
and .2  (O~CaO4Cs). Screening experimental data indicates that numerous 
acyclic fragments are gathered in areas close to 60 ~ for both q~, and q~ 
corresponding to a C2v symmetry and associated with a double anomeric effect 
[55] (Figures 4.18, 4.19). 
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Figure 4.19 Crystallographic data for acyclic C-O-C-O-C fragments (from Coss6- 
Barbi and Dub.is with permission [55]). 

Extension of this study to cyclic and acyclic fragments gives some insight 
about conformational energy minima, and suggests two possible inter- 
conversion pathways, both avoiding the constrained structure {q), = .2  = 0). 
These conclusions are supported by a coIfformational study of dimethoxy- 
propane, considered as a model compound, and carried out by quantum 
chemistry methods [at the semi-empirical INDO level}, which reveals the 
same probable interconversion pathways [55] {Figure 4.20}. 

For other applications of the structure correlation method, see also Nachbar 
et al. and Coss~-Barbi et al. [56] on structure- and internal dynamics- 
implications of the gem-6 effect {a widely documented mechanism in systems 
containing two tert-butyl groups in close proximity). 

Cis-trans isomerization around a Csp~-Nsp 3 bond 
Another example, providing a good indication of the relevance of the structure 
correlation method to foresee interconversion pathways and transition state 
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Figure 4.20 Theoretical (INDO) conformation map for 2,2 dimethoxypropane. 
Separation of lines 0.627 kcal/mol (from Cosse-Barbi and Dubois with permission [55]). 

geometry, is afforded by the recent study of the cis-trans isomerization process 
by rotation around a Csp~-Nsp 3 bond, as occurring in amides, enamines, etc. 
[57] (Figure 4.21). (For other examples see Wilson and Huffman [45].) 

R1 R= R, R, R3 

N k ~ N 

\ R, \ 
Rs R3 R2 

Figure 4.21 Cis-trans isomerization process example. 

Such systems tend to be planar owing to the partial double bond character of 
the C-N bond. However, in crystal environments, distorted geometries are 
encountered. The deformations have been described by the torsion angle around 
the C-N bond and out-of-plane bending of the amino nitrogen, from planar sp ~ to 
tetrahedral sp 3 (the Csp ~ atom resisting much more strongly to deformation and 
remaining nearly undistorted). Out-of-plane deformation origins from two 
different mechanisms: a "butterfly" bending of sp ~ nitrogen, and a complex motion 
combining both the twisting around the C-N bond and the nitrogen bending. 

From crystallographic data, the structure correlation method suggests that 
this complex mechanism satisfactorily maps the cis-trans isomerization 
process. Distorted O-C-N fragments reflect the geometrical changes occurring 
in the group along the reaction pathway (Figure 4.22). 
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Figure 4.22 Sample points mapped on to the calculated energy surface {function of x = 
twisting angle around the C-N bond, and • = out-of-plane bending angle of N){from 
GiUi et al. with permission [57]). 

Mapping from crystallographic data has been compared to a theoretical 
study of the reaction profile on the potential energy surface. From molecular 
mechanics calculations (with adapted force field parameters), the potential 
energy is evaluated as a function of the torsion and bending angles. 
Interestingly, it appears that the experimental geometries retrieved for 
distorted fragments are located along the valley leading from the planar initial 
conformation to a rotated and pyramidalized transition state. Note, however, 
that several MO calculations propose another pathway beginning with N 
pyramidalization, and only after rotation around the C-N bond [57]. 

Reaction pathways from structure correlation 
As to the use of crystallographic information for the inference of a chemical 
reaction, one can note the earlier work of Burgi et  al. [58] about the addition of 
a nitrogen nucleophile to a carbonyl group: 

( . . _ . ~  H O \ c /  
NH + 0 C 

N / \  
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N .  �9 �9 C = O contact distances were examined in a set of crystals corresponding 
to C . . .  N distances ranging from 2.91 ,/k (non-bonded contact) to 1.49 ik 
(covalent N - C - O  bond). Analysis of the geometry of numerous fragments 
shows that the N . . .  C distance (d~)is inversely correlated to the C=O distance 
(d~) and the deviation from r (A)(Figure 4.23). Or, in terms of reaction 
pathways; as the nitrogen atom approaches the carbon, the CO distance 
increases and the carbon progressively pyramidalizes. The N - C - O  angle 
suggests an attack from a constant direction at ca. 107 ~ of the CO bond 
[54,58,59]. 
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Figure 4.23 Geometry of N . . .  C=O and O. . .  C=O contacts (X-N or O). 

Transition state inference 
The method can be extended one stage further. It is clear that small 
displacements along a valley cost less in energy than motions perpendicular to 
it. The paths along the valley would therefore correspond to soft vibrational 
modes of the molecule. So, large amplitude internal motions of a molecule in 
a crystal environment can be inferred from the equilibrium crystal structures 
of a set of related molecules [60,61]. In favourable cases where extensive 
crystallographic observations are available, putative structures of the 
transition states can be proposed from experimental data {an uncommon 
situation, since transition states are more often only suggested from 
calculations} [60]. 

For triphenylphosphine oxide, the equilibrium structure of an isolated 
Phe3P=O fragment is close to a symmetric  propeller shape with the three 
phenyl rings rotated in the same sense by about 40 ~ {Figure 4.24). The stereo- 
isomerization path proceeds through a transition state with one phenyl ring 

Figure 4.24 Transition state inference example (from Bye et  al. with permission [60]). 
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nearly perpendicular to its C-P=O plane and the other two nearly coplanar 
(within 10 ~ with their own C-P=O planes, and leads to the enantiomer species 
(a mechanism related to the "two-ring flip mechanism" proposed by Mislow et 
al. from dynamic NMR studies of triaryl-boranes, -methanes, etc. [62]. For 
triphenylphosphine oxide, appreciable internal rotations of the phenyl groups 
about their respective P-C bonds are observed. The phenyl ring nearly 
perpendicular to the P=O bond (ring A) shows a much larger libration 
amplitude than the other two [61]. 

Multidimensional problems and statistical treatments 
In more evolved problems, where the systems present numerous degrees of 
freedom, preventing interpretation from visual inspection, it is often useful to 
decrease the complexity of the problem. 

One way in which to reduce dimensionality uses techniques such as principal 
component analysis. It substitutes the correlated (initial)variables with a few 
synthetic variables (referred to as principal components)more easily representing 
the variability of the system. The new variables are a linear combination of the 
original set, and are derived in decreasing order of importance. Selecting only the 
first ones allows for accounting for as much as possible of the variance of the 
original set, reducing the dimensionality of the problem without losing too much 
information. Another advantage is that this treatment avoids any a priori 
hypothesis on the significant parameters to examine, which could bias the 
analysis. On the other hand, some effort is necessary to connect the factors 
obtained (synthetic variables) to geometrical characteristics directly under- 
standable by the chemist. In terms of molecular geometry, one can hope that a 
certain linear combinations of parameters can be interpreted in chemical terms: 
for example, a linear combination of ring torsion angles was identified as 
representing a puckering parameter in a pseudo-rotation itinerary [63,64]. 

Another possibility is to reduce the number of data points. In clustering 
techniques neighbouring points are grouped together and the relationships 
between clusters are analysed. In the field of conformational analysis of molecular 
fragments, statistical clustering methods have been adapted to cope with highly 
symmetrical and periodic distributions of sample points in the conformational 
space. The method was illustrated in a study of the molecular fragment M(P-Phe3)~ 
with eight torsional degrees of freedom. The conformational interconversion 
model proposed implies gearing motions of the two P--G3 fragments alternating 
with stepwise inversions of the helicities of the P-Phe3 propellers [65]. 

4.5 THE BROOKHAVEN PROTEIN DATA BANK 

This project was started in 1971, with the constitution of standard format files 
providing the structural information for macrobiomolecules as the aim. 
Originally devoted to proteins, the database also distributes data on DNA, 
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tRNA and polysaccharides. Moreover, besides experimental determinations it 
includes some structures generated by computer simulation or derived by 
analogy with chemically homologous molecules. NMR data have been also 
incorporated [1,3]. Data are mainly gathered deposits (since, owing to the huge 
volume needed, atom coordinates are generally not published for large 
macromolecules). About 3500 atomic coordinate entries (in October 1995) are 
held in the database, with an increase of about 600 structures during the last 
year. 

4.5.1 Organization of the database 

For each structure, entry identifiers include the name and the source of the 
protein, bibliographical references and some comments. Then the sequence of 
residues is given, with information about the secondary structure: helices, 
sheets or turns. They are followed by geometrical data: a first line summarizes 
crystal cell parameters with the position of the origin and the scale factor 
(coordinates are stored in an orthonormal axial system in A units, whereas 
crystallographers commonly use axes based on the unit-cell vectors). Then 
each atom corresponds to one line of information gathering the atom name, its 
type, the residue name, chain identifier, residue sequence number, the 3D 
atomic coordinates (x,y,z), occupancy and temperature factor. Hydrogen bonds 
or disulfide linkages can also be identified thanks to connectivity records 
(Figure 4.25). 

Figure 4.25 

IN(l) C.(2)C(3)0(4)C~(5)I 
Ordering of atoms within amino acid residues. 

For some cases, structure factor data are also stored. Although these primary 
experimental data imply massive memory requirements, they possibly could 
be used in future to reexamine and refine the structures. 

As with the Cambridge Structural Database, various molecular modelling 
packages offer capabilities for easy interfacing to the Brookhaven Data Bank. 
They allow for varied displays of the molecule (or parts of it) and derivation of 
geometrical characteristics (torsion angles, interatomic distances, etc.). 
Frequently, for new structures entering the database, only the C. coordinates 
are given (before the full structure is solved), and various programs attempt to 
locate the side chains in energetically favoured conformations [66-68]. 

4.5.2 Main applications 

Until now, the main interest of the protein database has been to provide 
chemists with atomic coordinates of biological macromolecules. Each year, a 
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large number of papers cite the Brookhaven database as a source of 
information, particularly regarding active sites of selected enzymes. Docking 
varied inhibitors to an enzyme of a known structure and looking at protein- 
ligand interactions through energy calculations and computer graphics gives 
some clues to a rational approach of drug design. 

Another fascinating field of applications (but perhaps a long range objective) 
would be forecasting the 3D organization of a protein (tertiary structure) from 
the knowledge of its amino acid sequence. As a consequence of the rapid 
advance of sequencing techniques, the chemical sequence is known for many 
more proteins than their 3D structure, and the gap is growing, sequencing 
being much faster than structure solving. Known protein structures may 
constitute the root for predictive rules thanks to the homology concept or 
structural correlations. These points will be developed further in Chapter 13. 

Let us remark that the PDB is access free on the Internet. 

4.6 DATABASES OF CALCULATED STRUCTURES 

Such databases of calculated structures are generated thanks to various "model 
builders", that is, basically, programs able to propose 3D structures from 
connection tables indicating only the molecular topology. Model builders are 
generally based on a set of rules and some rough energy minimizers. 

This point is developed in Chapter 7. 

APPENDIX: INTERRELATION OF SOME EXPERIMENTAL DISTANCE 
PARAMETERS 

For more details see elsewhere [9, 10]. 

�9 Equilibrium nuclear position (r.}, attainable by quantum mechanics 
optimization, corresponds to the nuclear separation at the potential 
minimum (hypothetical vibrationless state}. 

�9 Average distance rg {averaged over thermal vibrations for different thermally 
occupied states} is related to distances reported in gas phase electron 
measurements. From this value, harmonic correction and temperature 
extrapolation yield r~ ~ which refers to the vibrational ground state. 

�9 From microwave spectra, average position r~ is averaged over zero point 
vibration {average nuclear position at the ground vibrational state}, and can 
be determined from rotational constants (after appropriate corrections}. 

r~ and r~ ~ are close to r.v and re, which respectively correspond to experimental 
or theoretical distances at minima of potential energy or energy hypersurfaces. 

Other values rm, to, r, derived from moments of inertia refer to specific states. 
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(ro is based on a simple analysis disregarding the effects of zero-point vibration; 
rsresults from a combinat ion of isotopic rotational constants in microwave 
spectroscopy, from which rm (modified mass dependence) can be derived. 

A bond length is better represented by rg, which is a real vibrational average 
(with small isotopic dependence), whereas non-bonded distances are better  
described by rz or r~, which refer to average nuclear positions. 

Some of these interrelations are summarized in Figure 4.26. 

MICROWAVE ELECTRON DIFFRACTION 

rs I 

ro ~ H M 0 M z E 

M e ~ 

Figure 4.26 Interrelation of experimental distance parameters. H = harmonic corrections; 
A = anharmonic corrections; I = isotopic substitution; E = temperature-dependent 
extrapolation (from HaEfelinger et al. with permission [10]). 
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Obviously, molecular geometry is the necessary starting point for most 
modelling treatments. Although modern NMR techniques can give some 
indications about interatomic distances for liquid samples, geometrical 
information, for large or medium-size molecules, is up to now mainly derived 
from crystallographic data (either from direct measurements or through 
retrieval from databases such as the well known Cambridge Database). 

However, such information only concerns crystals, where the geometry may 
be somewhat affected by packing effects and is not automatically the same as 
for the isolated molecule in the gas phase, or for the reacting species in biological 
media. Furthermore, such data are not attainable for samples that are difficult 
to obtain as good crystals, for hypothetical structures [conformers differing from 
the most stable one) or for molecules not already synthesized. Finally, if X-ray 
data give the geometry of the more stable form, they say nothing about 
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energetics and the possible existence of other low-energy structures. Suitable 
computational approaches are obviously needed for such applications. 

The methods of quantum chemistry are of course quite suited to predicting 
the geometric, electromc and energetic features of known or unknown 
molecules. Nevertheless, they remain, until now and probably in the 
foreseeable future, too expensive in terms of computer time and nearly 
intractable, even at the simplest, semi-empirical level, for many organic 
molecules or biological macromolecular structures. In this context, increased 
interest has focused on models able to quickly give energy favoured 
conformations for large systems. An important role is played in the field by 
techniques known as molecular mechanics (MM) or empirical force field (EFF) 
methods. On another hand, "molecular dynamics", or at a more pragmatic 
level, "model builders" (introduced in the following chapters) propose 
alternate avenues towards a non-experimental access to molecular geometry. 

Basically, molecular mechanics treats molecules as being composed of masses 
and springs (according to an idea traced back to Andrews as early as 1930 [1 ]). 
It uses the laws of classical mechanics to treat the diverse interactions occurring 
in the real molecule, according to a model that is empirically parameterized. 
Such a presentation in terms of atoms and bonds is not so far from the usual 
way of thinking of chemists with their ball-and-stick molecular models. 
However, it offers extended capabilities as to the treatment of non-standard 
situations that cannot be represented easily with such naive models (bond 
lengths or angles differing from usual values, small geometrical distortions due 
to steric crowding, structures departing from the common valence rules such 
as transition states, intermolecular associations, etc.). Molecular mechanics 
also gives important information about energetics: more stable or low-energy 
conformers, interconversion pathways, etc. Although it tells us nothing about 
electromc characteristics, its computational speed and its ability to deal with 
large systems make it very attractive whenever electronic properties are not 
needed or in other cases to get quickly optimized geometries to subsequently 
submit to the heavier quantum chemistry methods. 

These methods are often considered as the other "facet" of the Born Oppen- 
heimer separation of nuclear and electron motions. In quantum mechanics calcula- 
tions, one starts with a given position for the nuclei and searches for the best 
repartition of electrons in the potential generated by the nuclei (the calculation 
can be continued with modified positions of the atoms to get the conformer of 
best stability in an energy minimization process). In molecular mechanics, on the 
contrary, one studies the position of the nuclei in the field generated by the 
electrons. Electrons are not explicitly considered (with some exceptions, 
however), and the field they generate is not actually calculated, but rather 
represented by an "effective" potential treated according to classical mechamcs. 

Several well-documented reviews on empirical force field methods and 
molecular mechanics have been published recently [2-10] so we only present 
here a brief survey of the main underlying principles, and few indications 
about some common types of applications. The very popular molecular 
mechanics approach from Allinger et al. [2, 10-16] will be largely used as a 
basis for this presentation. 
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Looking at the internal energy of a molecular system, we can represent it, 
about the point of minimum energy, by a Taylor series expansion involving 
atomic coordinates. This is more easily carried out by use of internal 
coordinates (more familiar to the chemist): bond lengths, bond and torsion 
angles, together with interaction terms between non-bonded atoms, 
expressing van der Waals repulsions. 

This can be illustrated on the simple example of a diatomic molecule treated 
by the "classical mechanics" model of two balls joined by a spring (Figure 5.1 ): 
for any small variation of the internuclear distance (r)around the equilibrium 
position (ro) the potential energy is expressed by: 

d V ( r  1 d'V, )2 
V = Vo + dr - r~ +-2-~r~ l r -  r~ + "'" (s l) 

Figure 5.1 

r 

"Classical mechanics" model. 

If we assign to the energy a null value at the minimum (V o) and since at the 
equilibrium position the first derivative is zero: 

1 d'v  I k ( r -  + (5.2) 
V= 2 dr ~ ( r - ro  + . . . = ~  ... 

This corresponds to the well-known Hooke's law, familiar to spectro- 
scopists, k being the stretching force constant. 

A similar expression can be written for more complex systems: 

V =-~I F.k,,Ar,.Arj + ... (5.3) 

where the k,, are the quadratic force constants and Ar; the displacement  
coordinates of nucleus i (changes of the coordinates defining the location of 
the nuclei from their reference values). 

The problem is now to define the k,; coefficients that are the force constants. 
Their set constitutes the force field, which allows us to define the changes in 
energy depending upon the molecular geometry. 

The fundamental assumptions of molecular mechanics, largely justified by 
the countless successes of the method, are: 

�9 The potential energy of a molecule can be represented as a sum of terms 
associated respectively with the various types of molecular deformations 
(changes in bond lengths, valence or torsion angles) or atom-atom 
interactions. The steric energy calculated from the sum of these terms 
represents the addit ional energy associated with the deviations of the 
structure with respect to an ideal si tuation where all geometrical 
e lements  would be m a reference state. 

�9 The parameters needed to calculate this steric energy can be derived from 
information gained on small molecules (bond lengths, angles), their 
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transferabil i ty to large systems being assumed. In other words, as stated by 
Allinger: "A large molecule consists of the same features we already know 
about in small molecules, but combined and strung together in various 
ways" [2]. 

5.1 THE FORCE FIELD 

The key for successful predictions from molecular mechanics lies in a good 
representation of these different energetic terms, that is in the choice of the 
force field. 

At this point it must be clearly borne in mind that force field calculations 
"are performed on a model. This model is assigned properties that reproduce 
experimental facts, but this does not mean that it is in every respect a faithfial 
reproduction of the molecule under study. It only means that the particular 
information which has been used to develop the model is reproduced by the 
model" [2]. 

Although everyone agrees with the need for a consistent force field, 
according to Lifson and Warshel [17, 17a], i.e. a force field which should be 
optimized by fitting all kinds of data and all available data, the practical 
situation is far more complex, since one can only treat, up to now, a limited 
amount of data. So various force fields have been proposed, which depend to 
some extent upon the selected target, that is on the experimental property to 
be reproduced: geometry, heat of formation, vibrational frequencies, and even 
on the structural scope where they apply. 

However, as force fields become more and more complete, thanks to the 
inclusion of more exotic compounds (not belonging to their original 
application area), force fields tend to be more similar as their application areas 
overlap. 

5.1.1 Components of the force field 

In molecular mechanics calculations, the force fields generally take the 
form: 

V = V(r)+ V(0)+ V(~)+ V(nb)+ (specific terms ) (s.41 

in which the successive terms are associated with bond stretching, bond angle 
bending, bond torsion, non bonded interactions plus specific terms allowing 
for out of plane bending, electrostatic interactions and possible hydrogen- 
bonding. We shall first mainly focus on the simplest approximation level to 
emphasize the basic principles of the approach. Refinements of the force field 
will be detailed later. 
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Bond stretching 
The bond stretching contribution is represented by Hooke's law: 

1 
V ( r )  - E k , ( r  - r o (5.5) 

the summat ion  being performed over all bonds. 
k, and ro are the harmonic  force constant and the reference bond length for 

the corresponding bond. For large deformations or in the study of highly 
congested molecules, an additional cubic term 1/2 k', It-to) ~ can be introduced 
(quartic terms are more rarely consideredl. However some caveat must  be put 
on the use of such a cubic term: due to the shape of the cubic function, the 
energy goes to minus  infinity as the atoms go further apart. If the starting 
geometry is too bad, the bond would tend to dissociate. 

Alternatively, a Morse potential can be used: 

V{r) = ZD[1 - exp(-a(r - ro))] 2 (5.61 

D and a being parameters characterizing the bond. The use of such a potential 
seems useful for elongated hydrogen bonds which otherwise tend to dissociate 
[181. 

Angle bending 
A quadratic bending function is usually retained: 

1 x K(e_eo)  
angles 

t5.7) 

(the o underscript still corresponds to the reference value). 
Such an expression seems to work well up to deformations of about 10-15 ~ 

which covers most  of the usual cases. For the large distortions occurring in 
small cycles, additional terms may be introduced, but one generally prefers to 
mainta in  such a quadratic expression with different force constants, specific of 
the cycles investigated. 

Torsion 
Bond torsion effects can be well-reproduced with a Fourier series: 

V(*) = X 11 + cos* )+  ~ ... (5.8) 

represents the torsional angle, i.e. for a four a tom fragment ABCD, the 
dihedral angle between planes ABC and BCD. In a Newman  projection along 
the central bond BC, @ also appears as the angle between the projections of the 
bonds AB and CD. According to the convention proposed by Klyne and Prelog 
[19], a positive dihedral angle corresponds to a clockwise rotation of the first 
named bond to bring it on the second one. It takes the same value when one 
looks along the bond from one side or the other {Figure 5.2). 
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~.)-L-D 

Figure 5.2 Torsion. 

In molecular mechanics, thanks to the inclusion of van der Waals repulsions 
between non-bonded atoms (see below), and owing to the degree of precision 
required, it appears that three terms are sufficient to cope with all situations 
(Figure 5.3). 

v 1) (3) 

0 180 360 0 180 360 0 180 360 

Figure 5.3 
situations. 

(deg) 

Shapes of the torsional potentials V,, V2, and V3: three terms cope with all 

Torsion around a highly symmetrical sp~-sp ~ bond, as in ethane, is well- 
reproduced when only the third term corresponding to a three-fold barrier is 
used. Later it was shown that, in more general cases, inclusion of 1-fold and 2- 
fold terms (although smaller)improves the results [11]. On the other hand, for 
a sp~-sp 2 bond (as in ethylene), the preferred situation is the eclipsed one. V~ 
will be then the principal term so as to get a 2-fold barrier (and the other terms 
neglected). Note that we do not need here explicit mention to n electrons to 
treat the rigidity of the double bond. 

In more complex functionalized molecules, the three terms have to be 
considered. V~ accounts for the 2-fold barrier along double bonds, but it also 
intervenes for sp3-sp ~ bonds (in butane). The 1-fold component deals with 1-4 
non-bonded atom-atom repulsions (and electrostatic interactions). 

Out of plane bending 
For systems with sp ~ carbons, it is necessary to distinguish between in-plane 
and out-of-plane deformations. In alkenes, for example, out-of-plane bending is 
described by a quadratic term (Figure 5.4): 

e=~_l Z kb.X2 (5 �9 9) 
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Figure 5.4 Out-of-plane bending. 

Such terms are important for small cycles (cyclobutene, cyclobutanone) 
where valence angles are quite different from the usual 120 ~ value. Without 
them, the exocyclic atom would tend to move exaggeratedly out of plane to 
restore a 120 ~ valence angle {Figure 5.5). 

133" 120" 

Figure 5.5 Without quadratic terms, the exocyclic atom would move exaggeratedly 
out of plane to restore a 120" valence angle. 

Van der Waals interactions 
To ensure the transferability of the force field from one molecule to another 
molecular mechanics takes into account explicitly the interactions between 
atoms not bonded to each other or to a common atom. These are generally 
referred as van der Waals interactions. These terms are unfortunately generally 
omitted in spectroscopic calculations, leading to force constants varying for 
each individual molecule considered. 

Actually, these van der Waals interactions are represented by assuming the 
additivity of pairwise terms" for atoms i,j: 

V(nb) = X [A(r,,)-~ - B(r,, }-~1 (5.101 

or, alternatively [6-exp Buckingham potential}: 

V{nb} = E [A exp{-br,, ) -  B(r,, )-6] 
[5.111 

where the summation is taken over all non-bonded pairs of atoms {excluding, 
of course, atoms bonded to each other or to a common atom, since they are 
already taken into account in stretching and bending terms). Note that, to 
correctly reproduce torsion effects, both torsion potential terms and 1-4 non- 
bonded atom-atom repulsions are necessary. 

These expressions, and the other ones used, involve two terms: 

1. An attractive part, corresponding to induced dipole-induced dipole 
interactions, proportional to r -6, where r is the distance between the two 
atoms. 

2. A repulsive part, corresponding to London dispersion terms and rapidly 
growing at short distances {recall that in a hard sphere model schematizing 
what happens when two balls are brought close together, the repulsion 
would become infinite when the distance of the centres becomes smaller 
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than the sum of the radii). Various expressions have been chosen for this 
repulsive part, using either an exponential function [20] or an inverse 
power of r. For the exponent n a value of 12 is correct for expressing 
interactions in the rare gases or between closed shell molecules considered 
as a whole (Lennard-Jones 6-12 potential). A softer repulsive term with  n - 
9 is sometimes preferred in molecular mechanics.  

The Hill equation: 

V(nb) = e [-c~(r' /r)  6 + G exp(-G r/r ' ) l  (5.12) 

which works well for rare gases and small molecules, has also frequently been 
used in larger molecular systems (and is included, for instance, in the MM2 
program). In equation {5.12), the c, coefficients are taken as universal 
constants, e is an energy parameter  related to the depth of the pair potential  
well. For a pair of atoms i,j, e = ~V'~-~*e, where ek characterizes the "hardness" of 
a tom k. r* is defined as the sum of the van der Waals radii of the interacting 
atoms in the pair [21] (Figure 5.6). 

V 

v 

Figure 5.6 Variation of an atom-atom potential vs. internuclear distance. 

The c~ coefficients being treated here as universal constants, only two 
parameters are necessary to adjust van der Waals repulsions for each atom-pair 
(e and the sum of the van der Waals radii (r*)). For numerical  values see, for 
instance, Allinger [2]. Some typical values used in the MM2 parameterizat ion 
are given in Table 5.1. 

Some implicit  approximations are to be noticed: 

�9 First, one assumes that  terms derived from intermolecular  interactions can 
also represent intramolecular  interactions. 

�9 Then, it is considered that these pair interactions are not dependent upon 
their environment,  i.e. of the other atoms present. 

�9 Furthermore, atoms are treated as spheres [with an isotropic electron 
distribution around them}. This is not quite right for atoms involved in a 
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Table 5.1 Some van der Waals parameters  (MM2 1985 force field}. 

H 
47 
1.50 

alcohol 36 
1.20 

amine.] 34 
imine~ 1.325 

acid n 15 
a m i d e |  0.90 
vin alc J 

ELEMENT i 
10 3 ~, 

r 

(kcal/mol,  ]k) 

Lone 
Pair 16 

1.20 

B 
trig. 

tetr. 

34 
1.98 
34 
1.9 

C 
sp 3 

sp 2 

Si 

Ge 

Sn 

Pb 

44 
1.90 
44 
1.94 

140 
2.25 

200 
2.40 

270 
2.55 

340 
2.70 

N 

P 

55 
1.82 

166 
2.18 

O 
alc 1 50 
eth3 1.74 
O -  66 

1.74 
Op. 50 

1.74 

Se 

Te 

202 
2.11 

276 
2.25 

370 
2.40 

F 

C1 

Br 

78 
1.65 

240 
2.03 

320 
2.18 

424 
2.32 

vin alc: vinylic  alcohols; O+u: sf f  oxygen in furan 

For C �9 �9 �9 H: 103 e = 46; s u m  r* = 3.34. Dis tance  reduct ion  = 0.915. Cent re  of electron 
densi ty  for hydrogen shifted towards carbon and located at 0.915 of the CH distance. 

Van der Waals in teract ion energy be tween  t w o  a t o m s  i, j: 
Given 

P = r* / r (r* = r / +  rj; r in te ra tomic  distance} 
e* = (e, 8i) 1/2 

ifP_<3.311 Eik=e* (2.9x 10Sexp(-12's/P)-2.25P +) 

if P > 3.311 E,k = e* x 336.176 p2 Kcal /mole  
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molecule, and particularly for hydrogen atoms where the unique electron 
is engaged in the bond. In that case good results are obtained by shifting the 
centre of the sphere by about 0.1 A towards the heavy atom [22]. With 
atoms bearing lone pairs (such as nitrogen in amines or oxygen in alcohols 
or ethers, but not carbonyl groups), where non-bonded interactions are 
expected to be anisotropic, the lone pairs can be explicitly taken into 
account as dummy (virtual) atoms [23-25] which are given appropriate van 
der Waals radii. 

Note also that for larger biomolecules, some programs provide the 
possibility of using "united atoms": hydrogen atoms (except those involved in 
hydrogen-bonding) are omitted. One considers only the heavy atoms with their 
attached hydrogens as single (spherical) entities, with adapted van der Waals 
radii. 

5.1.2 Parameterization 

The selection of appropriate parameters for determining the force field is of 
paramount importance for the precision to be expected in energy or geometry 
predictions and the structural scope covered. 

Spectroscopic force fields deserve special mention, owing to strong formal 
similarities between some energetic terms (bond stretching, angle bending) 
and the expressions used in vibrational spectroscopy (Hooke's law). In 
vibrational analysis, performed with the valence force field approximation, the 
expression of the potential energy in terms of internal coordinates only 
involves diagonal terms. This results in force constants a priori differing from 
one compound to another one. However, taking into account some interaction 
terms (non-diagonal terms} in a generalized valence force field, some transfer- 
ability can be ensured within limited classes of closely related compounds 
(chemical families as alkanes, alkenes, and so on). A similar result can also be 
attained by the Urey Bradley approach, where 1-3 interactions (interactions 
between two atoms bonded to a same third one) are introduced [26]. 

In molecular mechanics, getting transferable parameters is of prime 
importance, since a single model should be able to apply to a large set of 
molecules. This leads to different definitions of the force field with, for 
example, inclusion of the van der Waals terms. 

Bond lengths and bond angles are usually available from existing structural 
information. X-ray crystallography is a privileged source of interatomic 
distances (supplemented by neutron or electron diffraction, and for smaller 
molecules by microwave spectroscopy). However, some caution must be 
exercised. Crystal lattice forces can modify distances derived from X-ray 
diffraction, when compared to electron diffraction measurements dealing with 
gas phase isolated molecules. However, these differences are small and can be 
neglected here. C-H bonds constitute a noticeable exception, since the nuclear 
position and the centre of electron-density are separated by ca. 0.1 A (see 
above). 
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Bond stretching parameters can be directly derived from vibrational force 
constants, whereas for angle bending constants, the corresponding values have 
to be scaled by about 0.8 to 0.5. The coefficients of the torsional barriers can be 
safely estimated from barrier heights (attainable through microwave 
spectroscopy or thermodynamic studies, and more recently far infrared and 
Raman spectroscopies). 

More difficult is the evaluation of van der Waals repulsions, a somewhat 
crucial point since these interactions are of paramount importance in 
determining the stability of crowded or highly branched molecules. 
Furthermore, van der Waals parameters are highly correlated with other 
parameters. "Molecules in which the van der Waals interactions are large and 
generally complicated, show many degrees of freedom in which the molecule 
may relax" [2]. 

A striking example of difficulties encountered in such a parameterization is 
illustrated by the extensive studies about the destabilization of gauche butane. 
In an early Allinger force field MM1 [25], this was reproduced with important 
hydrogen-hydrogen repulsions, but introduction of 1- and 2-fold torsional 
terms, and comparison with other force fields lead us to prefer softer and 
smaller hydrogens [11, 26, 27]. Let us note also that, speaking only of van der 
Waals terms, there is some interdependency between the e parameter and the 
radii intervening in the Hill equation, so that different models can work fairly 
well. Such problems are exemplified in the definition of the AMBER (Assisted 
Model Building and Energy Refinement)force field [29]. For carbonyl carbons, 
r* = 1.81 A and r = 0.184 kcal/mol are convenient in a 6-9 force field. However, 
in a 6-12 potential, these values have to be modified to r* = 2.175 A and e = 
0.039 kcal/mol. 

The choice of van der Waals radii is a difficult problem, largely discussed by 
Allinger [2]. A first source of information comes from the study of contact data 
on rare gases, or on selected compounds in the crystal phase (for instance, in 
graphite, the distance between carbon planes results from van der Waals 
interactions). Indeed, for rare gases, these values actually represent the sum of 
the van der Waals radii of the atoms. However, for molecules, the influence of 
other atoms further apart induces some attractive interactions and leads to 
some interpenetration of the van der Waals radii for the nearest atoms. Such 
distances of closest approach in crystals are the source of a largely used 
tabulation [28]. 

For molecular mechanics, calculations supported by atom spacing in 
selected alkane crystals allowed for assessing van der Waals radii for carbon 
and hydrogen. Reasonable estimates of the radii for other most common atoms 
have been then proposed [2]. It must be noted that these radii (used in Allinger 
force field for example) are, roughly speaking, 0.3 A larger than Bondi values. 

Optimization of the force field used is difficult work, since it involves many 
parameters not quite uncorrelated to each other. Some automatic but "blind" 
procedures have been proposed where the optimization is performed by the 
computer via multivariate regressions. An interactive approach where the user 
monitors the successive refinements seems more efficient. Parameterization 
protocols have been proposed [30,31]. The PEFF program [32, 32a] allows for 
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fitting the force field parameters to a set of experimental data, using a least 
square method. Conversion of ab initio force field to molecular mechanics 
energy parameters has been also proposed [33, 33a]. 

Some remarks: 

�9 Owing to the empirical aspect of these methods, it may be that parameters 
might be lacking for molecules not previously considered in the scope of a 
particular force field. Parameters taken from another force field cannot be 
directly introduced, but can only be used as a guide. Any force field is 
defined as a whole to reproduce experimental facts, but each of its terms 
has not independently an intrinsic meaning. 

�9 Reference values in equations (5.5)-(5.7)are not the experimentally 
observed values in simple systems. They are the values which lead to 
correct predictions within a given force field taking into account the other 
energy contributions. For example, in the MM2 program, single bond 
lengths (ca. 1.53, 1.54 A usually)are well-reproduced provided a reference 
value ro = 1.523 A is used (for ethane, experimental value 1.534 A, 
calculated 1.532 A). 

5.1.3 Refinements of the force field and cross terms 

Beyond the fundamental contributions to the force field (stretching, angle 
bending, torsion, non-bonded atom-atom repulsions), additional terms may be 
considered to refine the accuracy of the predictions. For example, the Urey 
Bradley formulation incorporates 1-3 interactions [26]. Alternatively, cross 
terms consider simultaneous variations of two parameters, such as changes in 
bond lengths and variations of the angle they define (this stretch-bend term is 
important in strained systems where bonds lengthen when constraints 
compress their angle)(Figure 5.7). Such terms have the general form (for 
adjacent bonds i and j making angle e~): 

1 k,i~,el[r, _ r,o + r, - r,o ][O,, - O,,o ] 
~ ,  , '  

98.16 _ 

1.542 

80.3 

F igure  5.7 Bonds lengthen when the valence angle decreases (for ethane, the 
calculated C-C distance is 1.532 A)(Allinger [211. 
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S p e c i f i c  t e r m s  

Some additional mechanisms must be also taken into account. Bond 
polarization is weak in alkanes and may be neglected, but it has to be 
introduced in systems bearing heteroatoms, and has even been considered in 
alkenes or alkynes. These electrostatic terms are of paramount importance for 
the evaluation of intermolecular interactions in polar molecules. Such 
interactions have been first taken into account with bond dipoles. However, 
for a more accurate representation it seems better to treat electrostatics 
through a set of partial atomic charges. So, special interest has been devoted to 
the determination of partial atomic charges or adjustments of bond moments. 

To reproduce electrostatic effects, the Coulomb law is used with point 
charges located at the nuclei: 

V(e) = G q~q~ 1 r D 15.131 
1] 

where q, and q, are the atomic charges and r, the interatomic distance for the 
pair of atoms i,j. A local dielectric constant D {usually varying from 1 to 4) can 
be introduced. 

Atomic charges may, of course, be derived from quantum chemical 
calculations. However, such methods (at the ab initio and even at the crudest 
semi-empirical or HMO levels} are not easily available for large molecules 
such as proteins. Furthermore, the concept of atomic charge is still open to 
discussion. Mulliken population analysis, often used in MO methods, has been 
widely questioned and is largely basis-set-dependent. Potential-consistent 
charges {i.e. point charges centred on atoms and defined as able to reproduce 
the electrostatic potential on a grid of points surrounding the molecule [34] 
have also been questioned). 

The construction of a practical yet realistic model [30], allowing for the 
treating of large molecules with reduced computational effort, is therefore a 
prerequisite for investigating the extended molecular systems of interest for 
biochemists [31 ], and particularly for developing reliable molecular mechanics 
programs. 

A possible solution {adopted in AMBER} is to carry out quantum mechanics 
calculations on fragments and then "patch" them together [29], the 
transferability of subunits being assumed. 

Among other approaches, the concept of electronegativity equalization 
underlies several calculation methods [35-39] and gives promising results: 
calibration on small test molecules is quite consistent with ab initio 
calculations and reproduces well various physicochemical properties, such as 
NMR or ESCA shifts, dipole moments, etc. Only one example would be briefly 
indicated here. 

In the model of Abraham and Smith [40], ~ effects of polar atoms are separated 
into one-, two- and three-bond additive contributions. The one-bond effect is 
proportional to the difference in the electronegativity of the bonded atoms, the 
other effects being functions of the atomic electronegativity and polarizability. 
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Charge induced on an atom by the ~ neighbour is treated as proportional to the 
polarizability of the former atom and the electronegativity of the latter. The 
charge induced by the y atom is directly proportional to the charge induced on 
the [3 atom. The actual charge distribution is evaluated by iteration, adjusting 
polarizability in each step until it reaches zero [41]. The parameterization is 
calibrated so as to reproduce the experimental molecular dipole moments. 

This method, initially proposed for saturated molecules including the most 
common functionalities, has been extended to conjugated systems in the 
framework of the Huckel Molecular Orbital (HMO) approach with a suitable 
choice of Coulomb and exchange integrals [42]. A similar approach has been 
proposed by Gasteiger et al. [41] in their Partial Equalization of Orbital 
Electronegativity (PEOE). Here, conjugated systems are included thanks to the 
concept of rt orbital electronegativity. 

Another method uses point dipole approximation. Bond dipoles are chosen 
so as to fit the moments observed in simple molecules. Only permanent 
dipoles are generally considered, although induced moments have been 
introduced in the IDME method [43]. 

Hydrogen-bonds  and m e d i u m  effects 

Hydrogen-bonds deserve special interest as a result of their prime importance 
in the stability of many biomolecules. They can be treated as a part of 
electrostatic and van der Waals interactions [44]. Otherwise, specific functions 
have been introduced [45-49]. For a better quantitative agreement, it was 
proposed to reduce the van der Waals radius of the hydrogens involved in 
hydrogen-bonding and increase the attraction term toward the electronegative 
atom by about 1-3 kcal/mol, depending upon the particular atom involved [50]. 
In AMBER, a different potential (10-12 rather than 6-12) is used for hydrogens 
involved in hydrogen-bonding [29]. 

Taking into account the influence of the solvent would also be of prime 
importance for a safe prediction of conformational energies. The simplest way 
is to treat these solute-solvent interactions with a continuum model which 
globally represents medium effects without explicitly considering solvent 
molecules. For example, dielectric constants of 1-1.5 are generally used for gas 
phase studies, whereas D = 4, possibly with distance dependence (see below for 
the AMBER force field) was claimed as more appropriate for crystals or 
aqueous solutions. 

Explicitly adding solvent molecules looks of course a more refined avenue, 
but at the expense of largely increased computer time, and this solution still 
does not account for polarizability effects. A common approach, also widely 
used in Molecular Dynamics simulations (see Chapter 6), is to immerse the 
molecule under scrutiny in a box containing a substantial amount of water 
molecules, to explicitly evaluate solute-solvent interactions. For example, in 
the TIP3P model of Jorgensen [81a], a cubic box (with 18.7 A sides) contains 
216 water molecules. 

The box is surrounded in all directions by its 26 images derived from 
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translations along the three axes. With this trick, a constant density of solvent 
molecules around the studied molecule can be maintained: if during 
optimization a solvent molecule escapes the box from one side its image enters 
the box from the opposite site. A convenient cut-off must be chosen to avoid 
an atom interacting with both another atom and an image of that atom. 

A somewhat similar approach was proposed to take into account lattice 
forces involved in crystal structures (for safer comparisons between molecular 
mechanics predictions and X-ray data). The crystalline environment around 
the molecule under study is built up according to the X-ray crystal data, as a 
block of, say, 5x5x5 unit cells. The energy of the central molecule is first 
optimized in a restricted environment {thanks to cut-off values). Then the 
energy of the block of unit cells is optimized using the optimized central 
molecule and the crystalline environment is adjusted. The process is then 
iterated until self-consistency is achieved [104]. 

Diverse other approaches were also proposed. For example, it was also 
suggested that for a rapid {possibly interactive) evaluation, solvation effects 
can be considered as roughly proportional to the accessible surface of the 
constituting atoms of the solute {weighted by a solvation parameter): see 
Chapter 8. 

Finally, a quite different strategy was developed by Gilson and Honig [51 ], 
Their model of charge-solvent interactions uses pairwise energy terms which 
can be easily incorporated into existing force fields. The basic idea is that 
interaction of a solute atom with the solvent can be described as an interaction 
of opposite sign with the other atoms of the solute: an atom interacting 
favourably with the solvent can be viewed as being repelled by the other 
solute's atoms. 

S y s t e m s  

Delocalized ~ systems involve a particular stabilization which had to be 
treated separately. However, in simple cases one can cope with such situations 
without taking into account ~ electrons explicitly. We have already indicated 
that the rigidity of the double bond can be reproduced by means of an 
appropriate torsional constant. Similarly, when a conjugated system can be 
considered as a whole {something like a substituent not directly involved in 
the property investigated) it may be described with a particular set of 
parameters. For instance, to maintain the coplanarity of a phenyl ring, one can 
use large force constants, thus making any out-of-plane deformation costly. 

More generally, however, an explicit evaluation of ~ effects is required and 
quantum chemistry is invoked. Warshel added to the usual molecular 
mechanics calculation for the o system a SCF treatment of ~ electrons to get 
the global energy to minimize [52]. Allinger [53] adjusts the bond stretching 
and torsional constants according to bond orders calculated from an initial 
geometry in a VESCF treatment {Variable Electronegativity Self Consistent 
Field). The calculation can be iterated to self-consistency if minimization 
tends to change the geometry of this part of the system. 
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In a more recent version (MMP2), a SCF n calculation is preferred to the 
VESCF approach to adjust bond lengths, stretching or torsional constants. The 
parameterization proposed allows for calculating heats of formation, 
resonance energies and structures for conjugated hydrocarbons in a way that is 
quite consistent with the calculations on non-conjugated molecules. The 
results obtained for a large, diverse group of compounds (aromatic or not, 
strained or strainless, planar or non-planar} testify to the accuracy of the 
method [54]. These calculations have been now extended to aromatic 
heterocycles [55]. 

5.2 STERIC ENERGY AND DERIVED INFORMATION: HEAT OF 
FORMATION AND STRAIN ENERGY 

The summation of all these energy contributions (see equation (5.4))defines 
the steric energy. For a molecular system, considered in a given geometry, 
steric energy represents the difference due to internal deformations and non- 
bonded atom-atom repulsions with respect to a hypothetical system where 
all parameters have the reference values and van der Waals interactions are 
null. 

This steric energy is sufficient for investigations on the same molecular 
system: minimization of steric energy will give the actual geometry 
("geometry optimization"); comparison between the steric energy associated 
with given conformers indicates their relative stability. Variations of steric 
energy depending upon one or two selected parameters (generally torsional 
angles) allow for drawing energy profiles or maps from which the inter- 
conversion processes may be approached. These are the most common uses of 
molecular mechanics in modelling, and the only ones to be developed here. 

However, for a comparison of energetic data with experimental information, 
as well as in the study of different molecules {i.e. systems with a different 
number of atoms or even a different topology), other energetic parameters have 
to be introduced. For example, steric energy is sufficient for comparing cis or 
trans di substituted alkenes, but not for the corresponding gem-derivative 
(which has a different topology). 

Heats of formation, directly comparable to experimentation, allow for 
testing the accuracy of the method in terms of energetic predictions, and lead 
to quantitative indices of thermodynamic stability. Strain energy gives a 
quantitative evaluation of the constraints (steric or geometrical) suffered by 
the system. 

For evaluating heats of formation, steric energy (difference with respect to a 
reference situation) has to be completed by bond- (and some additional 
structural-) enthalpy increments and a contribution from partition functions. 
This latter term, theoretically attainable via statistical mechanics, encompasses 
the influence of translation, rotation, vibration, internal rotations, etc. 
However, its evaluation is still controversial. Indeed, the force field 
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parameterization originates from data (geometries) corresponding to a given 
temperature (which is not 0 K) and so already includes some of these terms. 

A more empirical and crude model (such as that used in MM2) seems to 
work well: the heat of formation is defined as the sum of steric energy and 
bond-enthalpy terms. The latter are evaluated by summation of increments 
associated with the various types of bonds present in the molecule or, in an 
equivalent way, to the various types of groups (CH3, CH~, CH...). Supple- 
mentary structural-enthalpy increments take into account the presence of 
specific structural motifs (branched motifs for instance). The translation/ 
rotation contribution is given a constant value of 2.4 kcal/mole. These 
increments have been adjusted by comparison with the experimental 
enthalpies of formation for simple reference systems, and it may be thought 
that they implicitly contain the other contributions. For some specific 
situations, additional terms account for the influence of higher energy 
conformers or low frequency torsional motions (for example 0.36 kcal/mole for 
a torsional barrier around a bond of less than 7 kcal/mole). The results appear 
quite satisfactory, since with the early MM2 force field (1977), for example, the 
heats of formation of alkanes and cycloalkanes are predicted with an accuracy 
comparable to experimental uncertainty: standard deviation about 0.4 
kcal/mol [11]. Heats of formation of C60 (buckminsterfullerene, footballene} 
and C,0 have also been determined recently [56]. 

For comparison between non-isomeric systems, strain due to geometrical 
distortions is better expressed by the strain energy (neighbouring terms have 
been proposed: strain enthalpy, formal steric enthalpy, etc., with nearly 
equivalent definitions but slightly different numerical values). Strain energy is 
evaluated as the difference between the heat of formation and a strainless bond 
energy (which would correspond to a hypothetical isomer, strainless and 
exclusively considered in its minimum energy conformation). This strainless 
bond energy (as the bond energy just seen) is calculated by summation of bond 
increments. These have been chosen so that simple reference compounds have 
no strain energy at 25"C in the conformational mixture. 

Although numerical values may differ among authors as a result of the 
difficulty of defining what a strainless reference is, strain energy seems a good 
index of the strain existing in a molecule. However, some extreme situations 
have been quoted, where according to the force field selected, a comparison of 
two molecules such as norbornane or 2 tBu-adamentane leads to reverse 
conclusions as to the relative amount of strain they suffer. For a more detailed 
discussion, see elsewhere [4, 57]. 

5.3 SEARCH FOR THE PREFERRED GEOMETRY AND ENERGY 
MINIMIZATION 

For a given geometrical arrangement of the atoms in a molecular system, one 
can calculate, according to equation (5.4), the steric energy due to distortions 
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of bonds lengths and angles with respect to the reference values and van der 
Waals interactions (provided the system is not too far from the reference 
conformation). To determine the actual equilibrium geometry, one then has to 
minimize this steric energy with respect to all internal degrees of freedom. 
This locates the minimum of the hypersurface representing the steric energy 
in the hyperspace defined by the geometrical parameters characterizing the 
system. The problem may be expressed as searching for the minimum of a 
function of a vector variable X, the elements of which represent the 
geometrical parameters of the system (Figure 5.8). 

For the minimum, the first derivative (the gradient vector g, with 
components OV/Ox,)is null and the second derivative (the Hessian matrix G 
with components O~V/Ox~Ox~)is positive definite. Minimization methods to be 
used depend on the information known on the potential energy (hyper) surface: 
energy values only, first or second derivatives. Methods work either 
analytically or numerically [finite difference method). 

If only energy values are available, there is a priori no privileged direction to 
move on the potential energy surface. A downhill Simplex method, which does 
not require derivative evaluation, can be used [58], as in the MAXIMIN 
program [59]. As stated by Press et al. [58] direction-set methods prefer 
updating directions of search so as to get "good" directions allowing to go far 
along narrow valleys, or "non-interfering" directions so that what is gained 
along one direction is not spoiled by the following one. This is the principle of 
conjugate direction minimization, such as the Powell method (which does not 
in fact need derivative calculation). Alternatively discrete sampling via the 
Monte Carlo method is possible (see Chapter 7 devoted to the exploration of 
the conformational space). 

D2 

DI 

Figure 5.8 Steepest descent method. From the starting point P1, the first direction of 
displacement D1 is opposite to the gradient at the point. The minimum along D1 is 
reached at P2. The second displacement is performed along D2 to the minimum P3, and 
so on. 
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The gradient, if it is known, indicates the best direction to step the potential 
energy surface. This is basically the principle of the steepest descent approach 
of Wiberg [60] {Figure 5.8). The iterative process can be presented as follows: 
starting from a given point of the energy hypersurface, one looks for the 
direction in which the energy decreases most. It corresponds to the opposite of 
the gradient vector at this point. This is numerically determined by moving 
each atom individually along each of the three coordinates and calculating the 
resulting changes in energy. A new geometry is then proposed by moving 
simultaneously all atoms over a distance depending on aV/Ox,: the greater the 
gain in stability, the greater the corresponding atom displacement. The process 
is repeated until energy decreases no more. 

An analytical estimation of the energy derivatives {the gradient coordinates) 
accelerates the process by a factor of about ten. Such steepest descent methods 
are very general and seem to never stop hanging on a saddle point, so they are 
very useful to begin with crude structures far from the minimum, where more 
refined methods may fail. However, one drawback of the steepest descent 
method is that, in the current step, the search is made along the gradient 
direction. Once the minimum along that direction is found the next step is 
processed along an orthogonal direction, and so on. This may result in a long 
travel taking many steps to reach the energy valley floor. The method becomes 
also very slow near the minimum, when the slope is weak. In the "pattern 
search" of Schleyer et al. [61], for each step, the direction of motion from the 
preceding iteration is added to the current one. This speeds up the minimum 
search by a factor of two or three. 

The conjugate gradient minimization (Fletcher-Reeves or Polak-Ribiere 
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Figure 5.9 The minimization program runs downhill from the starting position (black 
circle} and stops at the first minimum found. On a minimum, the first derivative is null 
and the second is positive {schematic representation using a function V(x) of a single 
scalar variable x). 
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methods) also gives increased efficiency. For more details about these methods 
see elsewhere [5, 58]. 

Apart from these methods working only on first derivatives, the Newton 
Raphson method {5], using the Hessian matrix (second derivatives} directly 
determines the minimum for a quadratic function, or with few iterative steps 
for more complex expressions. Energy variations vs. coordinate changes are 
better expressed by a quadratic form [therefore involving the Hessian matrix). 
"The first derivative measures the slope and the second derivative indicates 
the rate of the change of the slope" [18]. 

For displacement vector 8 around the starting position defined by the vector 
variable X {of components x~...), a Taylor expansion leads to: 

g ( x  + = g ( x ) +  i5.14) 

where g is the gradient of the energy (components 3V/dx,) and G the Hessian 
matrix (~V/3x,3xj). At the minimum: 

leading to the basic expression: 

glx+ )=o {5.i5) 

G6 = -g(X) + ... (5.16) 

The minimum will be found directly if the function is quadratic, otherwise the 
iteration process is: 

- - "  --G-lg(x) Xk+ 1 = Xk + ~ (5.17) 

This Newton Raphson method is very efficient, at least for a guessed 
conformation neighbour to the solution {about three times faster than 
methods using only first derivatives), and is now very widely used as the 
standard energy minimization method. Nevertheless, it may be less efficient 
(and even not converge) for configurations far from the energy minimum. This 
may occur at points where the Hessian matrix is not positive definite. In the 
restricted step method, geometrical changes at each iteration are shortened so 
that energy does decrease. Equation {5.16)is modified as: 

{G + XI)a = -g(X)+. . .  (s.16') 

where I is the unit matrix of dimension mxm (m = number of parameters to be 
varied) and y a scalar chosen so as the new matrix G+k/is positive definite. The 
method therefore looks like an intermediate between the steepest descent and 
the Newton Raphson methods. An extension of the Newton Raphson method 
was proposed that approximately accounts for anharmonicity in bond 
stretching coordinates, and which provides more rapid convergence [62]. 

Another handicap is that the demand on computer resources is high since 
half the Hessian matrix needs to be calculated and stored at each iteration. To 
avoid such a time-consuming way, in quasi-Newton methods, one updates the 
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Hessian matrix [or the approximate form accepted for it) thanks to information 
gained during the current iteration [5]. This corresponds to the frequently used 
Davidon-Fletcher-Powell (DFP} or Broyden-Fletcher-Golc[farb-Shanno [BFGS} 
methods [58]. 

One can also use the bloc diagonal Newton Raphson method, where only 
3x3 submatrices along the diagonal are considered, each related to the 
coordinates of one atom, i.e. one atom is moved at a time. The geometric 
improvement is not so fast as with the full matrix method, but the computer 
time is largely reduced {especially for large molecules). 

The ORAL energy minimizer [63] proposes various options such as "floating 
block" which can either conserve or modify their geometry during 
minimization, and the possibility to incorporate NOE distance inequality 
constraints. With this comes added penalty terms which seriously hamper 
conformations where constraints {interatomic distances in that casel are not 
satisfied. Minimization under constraints was also tackled by Dillen [32, 32a]. 

The energy minimization process is generally performed starting from an 
"initial guess", derived for example from standard geometrical parameters, or 
realistic data taken from neighbouring systems. However, finding the true 
energy minimum is not a trivial problem. Usual minimization methods stop 
at the first minimum encountered near the starting point, even though it 
may be only a local {secondary} minimum. In other words, they do not go 
through a potential hill to find the [true) absolute energy minimum. Various 
solutions to explore the conformational space have been proposed, and will 
be briefly discussed in Chapter 7, dedicated to the traversal of the 
conformational space. 

Traversing the cordormational space is often computer time-consuming in 
full optimization processes. However for many applications, simplifications 
can be introduced owing to the relative magnitude of the different force 
constants intervening. Roughly speaking, it is more costly to relieve strain by 
stretching a bond rather than opening a valence angle and a fortiori modifying 
a torsional angle. So for large systems it is more convenient to reduce the 
conformational freedom and adjust only torsions, standard fixed values for 
bond lengths or angles being assumed. Such a solution has been proposed, for 
instance, for large polypeptides [46, 64]. It is sometimes better to minimize 
first on dihedral angles alone, and then from that minimum allow relaxation of 
all degrees of freedom. 

5.4 MOLECULAR MECHANICS" SCOPE, LIMITATIONS AND 
EVOLUTION 

For all problems where the electron distribution is not explicitly needed, [so 
when only energy or geometry is consideredl, molecular mechanics is a very 
attractive approach, working rapidly and efficiently. When compared to 
quantum chemistry methods, it can be noted that the computer time needed 
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increases as the square of the number of atoms, whereas for quantum methods, 
time grows as the square or the cube of the number of orbitals (at the semi- 
empirical levelJ or as a fourth power for ab initio approaches. This gain in 
computer time {often amounting to some powers of ten) is a notable advantage 
favouring molecular mechanics as the systems comprise more atoms. So, 
whereas ab initio quantum approaches have been practically limited until now 
to small or medium size molecules, empirical force field methods can be 
reasonably applied to large systems. Some versions of molecular mechanics (or 
empirical force field} programs allow for the treatment of few hundred atoms. 

In other respects, molecular mechanics involves quite simple concepts, not 
far from the usual way of thinking of chemists and the elementary reasoning 
from ball-and-stick models. 

However, its empirical character is handicapped by some drawbacks and 
restrictions. Accurate results are obtained within the scope for which the 
method has been parameterized. Highly strained molecules or systems with 
"exotic" geometries (far from the reference systems used to define the force 
field} cannot be reproduced well with standard force fields, and require the 
search for new parameters. The same is true for some chemical species or 
atomic patterns not yet taken into account. This may be performed by fitting 
available data (experimental or ab initioJ on relevant small similar systems. 

For non-classical situations, specific terms have to be introduced: lone pair, 
hydrogen bonding and anomeric effects have yet been considered. Others may 
appear to be necessary for more complex problems. Furthermore, such 
methods do not explicitly consider n electrons. This deficiency may be biased 
by a composite approach, adding to the usual MM calculations on the 6 
framework, a n electron calculation with semi-empirical quantum methods. 

Recent refinements of the MM2 force field have been proposed to enlarge the 
structural scope of the method and give more reliable results. New or modified 
parameters have been reported, comparisons with ab initio results on model 
compounds being generally used to scale the proposed values and to check the 
validity of the method in the structural area considered. Besides the numerous 
chemical families already investigated or revisited (alkanes, alkenes, alcohols, 
acids, ketones, etc.J, imines [65], ketenes [66] peroxides and oxonium ions 
[67-71], organosilicon compounds [42, 72-74], sulphur heterocycles [55] ethers 
and anomeric effects [69, 70] have recently been scrutinized. Interestingly, for 
siloxanes, no torsional potentials are necessary to account for torsional 
barriers (the effects being reproduced well using only appropriate non-bonding 
and electrostatic potentials [72-74]. An accurate force field for zeolites was 
also developed [75]. Slight modifications of the treatment of out of plane 
deformations in the MMP2 method have also been proposed to improve the 
underestimated rotational barriers involving ring distortions [76]. 

While the MM programs of Allinger have nearly become a standard for 
modelling small or medium size organic molecules, various other programs 
appeared using somewhat similar expressions of the force field. The 
MAXIMIN program [59], for example, was presented as performing comparably 
to Allinger MM1 and proposing special features making it particularly suitable 
for the treatment of flexible molecules in a pharmacophoric pattern search. 
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One can note, for example, the "aggregate option" which protects the 
geometry of molecular fragments [considered as rigid entitiesl while 
optimizing their orientation. 

In the neighbouring family of the Consistent Force Field programs, Huige et 
al. [77] discussed the determination of the force field parameters for imines and 
oximes, and provided some insight about the way in which these problems can 
be approached. 

Besides the conventional force fields used in popular molecular mechanics 
MM2 programs and recent parent approaches such as MM3 or AMBER {see 
below}, a quite different definition of the force field was proposed by Saunders 
and Jarret [78]: terms involving bond or torsion angles being replaced by two- 
body central forces between atoms. Promising results have been obtained with 
increased speed. 

In other respects, AMBER [29, 79] or AMBER/OPLS [80, 81], ECEPP [82], 
CHARM [83, 84] and CFF/VVF [85-87] were mainly devoted to biopolymers, or 
YETI [88] to small-molecule protein interactions, while other developments 
aim to incorporate interactions with metal ions [89, 90]. Generally speaking, 
owing to the relative simplicity of the calculations involved, it is not 
surprising that most of the modelling packages, even the crudest ones, include 
some type of energy minimizer with more or less sophisticated force fields. 

We will now examine in some detail the recent MM refinements with MM3 
and AMBER, as an example of a biomolecule-oriented force field. 

5.4.1 MM3 force field 

Although, as stated above, empirical force field approaches land particularly 
the widespread MM2 method} have provided a lot of successful predictions as 
to molecular geometries or favoured conformers, typical failures have been 
identified in some special (and fortunately limited} cases, prompting new 
attempts to refine the MM2 force field parameterization. These could take 
advantage of newly available high accuracy experimental data fgas-phase 
works on relatively simple structures, low temperature crystallographic 
studies, neutron diffraction information, etc.). 

The two models proposed (MM3 by Allinger et al. [12-16] and the empirical 
force field of Dillen [32, 32a] have been adjusted for alkanes considered as the 
basic element of the molecular architecture [before a further extension to 
heteroatoms). Although using different solutions to parameterize the force 
field, the two models largely remove the major flaws of the former MM2 
approach: underestimation of high C-C rotational barriers in congested 
molecules and of bond elongation triggered by eclipsed interactions, 
overestimation of repulsions in short H . . .  H contacts and of sublimation 
enthalpies of crystalline hydrocarbons. 

Rather than modifying only certain values or introducing appropriate 
correction terms, both research groups prefer to define again a complete and 
consistent force field reproducing the results of MM2 (in the structural scope 
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where it works well) and correcting its pitfalls for most of the failures 
identified. Interestingly, as to the empirical character of these molecular 
mechanics methods, it appears that different sets of parameters and even 
different analytical expressions for the energy contributions can reproduce 
former results (in the usual situations) or improve them for specific cases. 

As for MM3 parameterization, a quartic term is introduced for bond 
stretching (to balance cubic terms tending to separate atoms for geometries far 
from the equilibrium), whereas in EFF a Morse potential is used. Torsion and 
stretch-bend interactions are treated similarly as in MM2. On the contrary, for 
angle bending the former quadratic term is completed by higher powers (up to 
the sixth one), torsion-stretch interactions (in ( r -  1"o)(1 + cos3~))and bend-bend 
interactions (for angles centred on the same atom) in ( 0 -  0o)(0' - 00') are 
introduced (the latter for a better description of corresponding vibrational 
frequencies). However, the previous torsion-bend interaction is now 
suppressed. Parameterization for the anomeric sequence C-O-C-O-C  has 
been updated. A different solution is adopted in EFF, where anharmonicity in 
bending or bend-bend interactions are lacking. In MM3, for example, non- 
bonded atom-atom potentials have been refined from those available in MM2 
by examination of crystal parameters and heats of sublimation of some n- 
alkanes, graphite and benzene. C and H atoms are slightly softer than in MM2 
[16]. Different values have been preferred in EFF, corresponding, as for C-C 
interactions for example, to C atoms larger and harder than in MM3 (Figure 
5.10).  

An important feature of MM3 is the interest devoted to vibrational 
frequencies (not considered much in MM2 or EFF). Thanks to a better 
definition of the force field (with bend-bend and torsion-stretch interactions), 
vibrational frequencies are evaluated for a selected sample of hydrocarbons 
with a "chemically acceptable" accuracy of +35 cm -~, which allows a possible 
estimate of entropic terms. 

Evaluation of the intensities of the IR bands (from changes of the dipole 
moments) has been also proposed [91]. Interestingly, it appears that these 
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entropic terms are important in the evaluation of rotational barriers. So, a part 
of the discrepancies previously observed between experimental NMR data 
(referring to free energies of activationl and calculated barriers (enthalpic 
termsl is due to entropic contributions. 

For instance, the rotational barrier of 2,2,3,3-tetramethylbutane (exp: 10.2 
kcal/mol) is reproduced well by the EFF model (10.01) and MM3 (9.28 
kcal/mol, resulting from an enthalpic contribution of 7.77 kcal/mol and an 
entropic term of-8.57 e.u.), whereas the discrepancy is quite large with MM2 
[calculated enthalpy: 5.24). 

A detailed discussion of the geometries of representative hydrocarbons is 
presented elsewhere [14, 32a] compared with either experimental or former 
MM2 results. Some data for norbornane are gathered in Figure 5.11. Allinger et 
al. [13] discuss particularly the influence of torsion-stretch interactions to 
reproduce the lengthening of [nearly) eclipsed C-C bonds. From a comparative 
computational and experimental study of dodecahedrane derivatives, Allinger 
et al. can assess that MM3 calculations are competitive in accuracy with low 
temperature crystal structures. 

In a series of subsequent papers [92-95], the MM3 force field was extended to 
various classes of compounds: alcohols and ethers, amines, aldehydes and 
ketones or amides, polypeptides and proteins. It can be noted that, in this new 
force field, lone pairs which were explicitly included in the preceding MM2 
pararneterization are no longer utilized. As for alkanes, vibrational spectra are 
fairly well reproduced (rms about 35--40 cm-~). In the case of amides, particular 
attention was devoted to electrostatic interactions in an aqueous medium. 

7 

1 

3 

MM2 MM3 Experimental 

Average C-C 
bond length (A) 1.541 1.548 1.546-1.548 

Longer bond: 
C2-C3 (A) 1.541 1.557 1.559-1.573 

Lower angle: 
at C7 (') 92.5 95.2 93.4--94.6 

Figure 5.11 Comparison of some geometrical data for norbomane (from Allinger et al. 
[13]). The agreement is quite good for torsion angles {within 10). "Experimental" data 
gather X-ray crystallography, electron diffraction and ab/n/ t /o calculations. 
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According to the authors, structural results obtained on the small protein 
crambin "are better than those with MM2 and comparable with the better 
specialized protein force fields available" [92-95]. 

5.4.2 AMBER model 

The molecular mechanics approaches of Allinger et al. [2] and Ermer and 
Lifson [87] started from the study of saturated hydrocarbons viewed as isolated 
molecules (in inert solvent or in gas phase}. Some authors question the best 
force field to use for polar or ionic molecules in condensed phases, particularly 
regarding bioorganic systems such as proteins and peptides [96, 97] on the one 
hand, and on the other, nucleic acids [98, 99] and proposed various sets of 
parameters. The AMBER force field, from Weiner, KoUman and co-workers [29, 
79], is described as a general force field developed in a consistent way for both 
proteins and nucleic acids. Basically, although usually using "united atoms" 
(hydrogens bonded to carbon omitted}, it is not very different in its 
fundamental expression (5.18) from the formula (5.4) previously indicated. 
Similarly, parameters are first extracted from physical measurements 
(microwave, neutron diffraction, crystal packing information) and refined 
through molecular mechanics calculations on model compounds closely 
related to the structural scope under investigation: 

Etota I -- bon~ K,(r - rCq )2 + anglesX KS(0 -- 0eq )2 .~. dihedralsX ~--~-~ [1 + cos(nr - Y] + 

 iAi Bi q qi l+ 
[5.18) 

So, we only comment on some specific features. For the relatively 
unstrained proteins and nucleic acids, quadratic functions are sufficient for 
bond stretching or angle bending, joined to a Fourier series for torsional energy. 
Van der Waals terms are expressed with a 6-12 potential. Electrostatic 
interactions (treated as a Coulombic expression (q~qj)/DR,) deserve more 
attention, as well as a supplementary 10-12 potential introduced to account 
for H-bonding effects. 

As to the van der Waals term, it is worth noting that, as previously stated, r* 
and e, atomic van der Waals radius and well-depth (intervening here in A,, 
B,,...) are strongly interconnected and dependent upon the expression used 
(6-9 or 6-12 potential}. The values retained within this particular method are 
nearly 0.2 A larger than the "standard" van der Waals contact radii [28]. For 
interactions involving hydrogen-bonding hydrogens and heteroatoms, a 10-12 
potential is used with a depth of 0.5 kcal/mol to better reproduce H-bond 
distances (predicted as too short if this term is omitted and too long ff one uses 
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the usual 6-12 potential). The evaluation of electrostatic terms involves two 
interesting features. 

First, a distance-dependent dielectric constant D = R~j may be chosen to 
simulate the fact that in water media, intramolecular electrostatic interactions 
die off more rapidly with distance than in the gas phase. Then, rather than 
semi-empirical {CNDO type)Mulliken charges, atomic charges are chosen so 
as to fit the ab initio electrostatic potential surrounding the molecule [34, 
100]. These calculations are carried out on subunits and then "patched" 
together. For example, protein residues were broken into two parts: the bridge 
containing the ~ and [3 carbons and the "chromophore" possessing the 
remaining side chain atoms. Note also that for hydrogen bonding, sulphur (but 
not nitrogen or oxygen) requires explicit inclusion of lone pairs. 

Another interesting point is the introduction of a cut off distance to avoid 
calculating interactions between too distant atoms (ca. 9/tL, with a progressive 
attenuation between 8 and 9 ]k to better accommodate the influence of atoms 
entering (or leaving)the active domain during an energy-minimization process). 

Van der Waals hydrogen parameters have recently been revisited [101] to 
take into account the effect of neighbouring electronegative substituents 
(electron-withdrawing groups attached to a methyl group pull electron density 
away from the methyl hydrogens, thus allowing for a closer approach of the 
surrounding water molecules}. 

The proposed force field has been satisfactorily tested on diverse examples 
such as furanose sugar puckering, base stacking, hydrogen-bonding, base paired 
dinucleoside phosphate refinements, Ramachandran energy contours for 
dipeptides, and refinement of insulin (a small protein of 500 atoms). These 
successes confirm that the model is likely to work consistently for both 
nucleic acids and proteins {29]. It has recently been extended to 
dehydroaminoacid residues [ 102]. 

For the description of proteins in solution or crystalline environments and 
nucleotide bases, the AMBER force field was modified in OPLS {Optimized 
Potentials for Liquid Simulations) [80, 81] with the introduction of a set of new 
potential functions {Coulomb plus Lennard-Jones), bond stretching, angle 
bending and torsional terms being adopted from AMBER united-atom 
parameters. This new parameterization was obtained and tested in conjunction 
with Monte Carlo statistical mechanics simulation on organic liquids or 
aqueous solutions and optimization of crystal structures for some polypeptides. 
As for nucleotide bases, ab initio calculations for base-water complexes and 
simulation of the binding energies between pairs of bases were used. 

Broademng the structural scope of empirical force field methods is of 
constant interest in the quest for a universal force field, i.e. a force field which 
may give good uniform quality predictions over a wide variety of compounds, 
even if it is not the best one for limited classes of compounds [103]. In this 
field, one can notice the recent study of the protein crambin by molecular 
mechanics [92-95, 104]. Such peptides, generally studied with more specific 
programs {AMBER), constitute an interesting challenge owing to the size of the 
molecules, the importance of polar and hydrogen-bonding effects, and the 
influence of an aqueous surrounding medium. The MM2 [104] and more recent 
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MM3 [92-95] studies of the protein crambin (46 residues, 327 non-hydrogen 
atoms, 671 atoms)illustrates the capability of the MM methods of treating 
large systems and to perform energy minimizations (consistent with X-ray 
data) with a modest cost in computer time (45 minutes on a CYBER 205). Also 
relevant to the problem of evaluating the quality of the force field is the recent 
validation of the Tripos force field of the SYBYL package [103] or a comparison 
of MM2 with various other force fields included in commercial modelling 
packages (SYBYL, CHEMX)or  semi-empirical quantum methods [105]. 
According to the authors, the conformational energies for hydrocarbons are 
"reasonably well-reproduced by all the tested methods", the best agreement 
(even for functionalized compounds) being obtained with MM2 (1985 
parameter set). 

Recently, Dillen [32, 32a] proposed the PEFF program to assist in the 
development of empirical force fields. It accepts a wide variety of potential 
energy functions (with option capabilities} and provides a multidimensional 
driver to scan energy hypersurface. 

5.5 SOME APPLICATIONS 

5.5.1 Molecular mechanics and conformational analysis 

In molecular modelling, molecular mechanics is now mainly used to predict 
the favoured geometry, the relative stability of conformers or the ease of their 
interconversions. More specific applications, such as investigation of steric 
effects (and related geometrical distortions} on chemical reactivity and 
determination of the energy profile of a reaction, will not be discussed here. 

Numerous studies assess the efficiency and accuracy of empirical force field 
methods. For hydrocarbons, as quoted by Osawa and Musso [3], the very simple 
(but well-balancedl Engler force field, with only four terms [61 ], generally leads 
to excellent geometry predictions (0.007 A for lengths, 1-2 ~ for bond angles, 2 
kcal/mol for energy}. A lot of structures covering a large structural scope have 
been evaluated by Allinger MM calculations with an accuracy comparable to 
experimental precision. However, some specific situations are not always 
reproduced. So, if the stretching of C-C bonds in highly substituted ethane 
derivatives is predicted 11.68-1.60 A for the central bond of pentaphenylethane 
vs. an experimental value of 1.60 A), the method (with the MM2 force field) 
fails to reproduce the enlarged bonds induced by through bond coupling of 
orbitals (o bond surrounded by several parallel it orbitals). 

Determination of stabilomers 

The speed of the calculations makes molecular mechanics very attractive for 
scrutinizing the more stable isomers in complex polycycles CoH~ [from C8 to 
C~,). For each family, the "stabilomers" have been determined through 
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systematic generation of all the possible isomers, elimination of those 
obviously too severely constrained and MM calculation of the remaining 
proposals [3]. However, for such complex systems, various local minima of 
comparable stability may exist on the potential energy hypersufface, and some 
discrepancies sometimes appear between the rearrangement products obtained 
and the calculated more stable isomers {Figure 5.12}. 

Figure 5.12 Among the low energy isomers of the 15358 possible pentacyclo- 
undecanes, De tris-homocubane is calculated as the most stable (strain energy = 
42 kcal/mol). 

Conformational filiations 
Numerous structure/activity or structure/property relationships in pharma- 
cology or physical chemistry characterize structures through topological 
descriptors, i.e. descriptors specifying only the nature of the atoms and bonds 
linking them, without any information about their actual 3D location (Figure 
5.13). The success of such relationships may seem at first glance a little 
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Figure 5.13 One topological adjunction generally corresponds to several possible 
topographical adjunctions. Projections along the C-A1 bond. B, positions are located 
behind the plane of the figure. 
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amazing, since many properties are known to depend upon cortformational or 
geometrical features. It relies on the fact that, within a limited series of related 
compounds, topology implicitly reflects the main topographical (3D) aspects: 
"topology may be described as rubber sheet geometry" [106]. 

One advantage of topological descriptors is their flexibility for easily 
deriving relations of formal organization between molecules. For instance, 
topological models are based on the concept of filiation by successive 
adjunction of sites. Each compound is embedded in a network where it is 
surrounded by the structures from which it derives or which it generates by 
adjunction of sites (Figure 5.14). 

What does the adjunction of a topological site mean to the actual molecular 
architecture? In rigid molecules, this corresponds to the occupation of a well- 
identified spatial location. However for flexible systems, the question is to 
pass from one given population of conformers to another [107]. 

To ensure the validity of the models based on 2D descriptors (topological or 
others) at a predictive or interpretative level, it is therefore of paramount 
importance to demarcate the areas of structural regularity (where the 
conformational mixture or the predominant conformer does not change) and 
their border lines where the models have to be modified. 

A striking example is given in the revisitation of Taft steric constants E, by 
Dubois and co-workers, from an examination of the accessibility of the 
carboxyl group in a series of alkylcarboxylic acids [108, 109]. From MM 
calculations, it was shown that the first terms (up to seven carbon atoms) 
correspond to eclipsed conformations, whereas more branched structures 
prefer a bisected conformation. In the first population, successive additions of 
carbons increase the steric hindrance (as expected), whereas in the second one 
a levelling of the steric constant is observed. Furthermore, very surprisingly, 
geometrical distortions in overcrowded skeletons induce decreasing steric 
effect. 

This leads to the concept of "topographically active sites", a site seen by the 
reaction (or the property) centre (Figure 5.15). This concept has been further 
extended to cyclic systems, and to other physicochemical properties. In ~3C 
NMR, it allowed rationalization of the surprising variations of ~-substituent 
shifts observed in cyclic derivatives [110]. 

"'Anti-Bredt'" olefins 

"Anti-Bredt" olefins provide another example where information about the 
stability of rigid cyclic systems suffering from geometrical constraints is 
sought for with strain energy calculations. 

Amply supported by numerous examples, the Bredt rule can be briefly 
schematized as: in small bi- or poly-cyclic systems a normal double bond 
cannot emanate from the bridgehead. Whereas in large bicyclic systems, 
bridgehead double bonds were known since the late 1940s, the isolation of a 
first anti-Bredt olefin in 1967 [111] prompted a large amount of work {Figure 
5.16} to synthesize similar compounds and to rationalize their stability. The 
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Figure 5.14 Formal generation series of alkylcarboxylic acids. Closed ovals represent 
bisected conformations, open ovals indicate eclipsed conformations, El = C-COOH, �9 
= Me. Numbers indicate the steric parameters Es' for alkyl groups. The three areas I, 11 
and HI correspond to increasing, levelling and decreasing steric effects (from Dubois et  
al. with permission [108]). 



SOME APPLICATIONS 1 5 5  

(a) 

o H C 
H ' , ! 
C. .  .C " C 

~ . . . .  C 
C 

I)!. 
H C 

(b) 

o 

..C. .C -- 
m~C'" c ~ C  j?'. 

0 H C 
I , !  

" "  " C  

- ..H 

H ..Cx ~ 
H f 

E' s = - 5 . 0 1  

I A =-2.38 

E' s = - 7 . 3 8  

I A = o  

E' s = - 7 . 3 8  

Figure 5.15 Replacement of H by C on an active site (a) induces a large variation of the 
steric constant, whereas on an inactive site (b), the variation is negligible (or small). The 
new carbon introduced is indicated by a circle (from Dubois et al. with permission[ 108]). 

key element for interpreting the observations is a clear separation between the 
strain of the double bond and that of the carbon framework. A definite 
improvement was the concept of ole f in ic  s t ra in  (OS)proposed by Schleyer et  
al. [112, 113]. OS represents the difference in strain energy between the 
bridgehead olefin and the corresponding alkane, the two systems being 
considered in their most stable conformation. OS values calculated from the 
MM2 program lead to an empirical loose classification (which up to now has 
suffered no exception) of bridgehead olefins as [ 113]: 

�9 i s o l a t a b l e  (kinetically stable at room temperature at least long enough to 
permit reactions or spectroscopic observations)when OS < 17 kcal/mol, 

�9 o b s e r v a b l e  (detected spectroscopically at low temperature) 17 kcal/mol < 
OS < 21 kcal/mol, 

�9 u n s t a b l e  (generally not observable, except perhaps in matrix isolation and 
commonly detected by trapping): OS > 21 kcal/mol. 

Figure 5.16 Anti-Bredt olefin. 
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As an example among a lot of systems studied by Schleyer et al., we only 
mention the two olefins (a) and (b)which have almost identical total steric 
energy. However, their OSs differ by about 8 kcal/mol in agreement with the 
fact that (b)but not (a) has been observed. OS values also focus particular 
interest on hyperstable olefins, containing less strain that the parent alkane 
(their OS values are therefore negative), and which are predicted remarkably 
unreactive, as for instance (c)which has been already synthesized (OS =-1.5  
kcal/mol) (Figure 5.17). 

Figure 5.17 

H 

(b ( 

Schleyer e t  al. [113] example. 

Dynamic  conformational analysis 

Complementary to the determination of the most stable species, one often 
needs to know if there are any other low energy conformers, and what the 
interconversion pathways may be. Indeed, molecular flexibility and shape 
adaptation processes may be important features in drug-receptor or ligand- 
protein interactions. 

In simpler cases, scanning the conformational space can be reasonably 
carried out through stepwise variations of only one, or more generally two, 
geometrical parameters, usually torsional angles. Co~ormational maps are 
generally drawn given selected fixed values of two geometrical parameters, on 
a grid of points. Steric energy is minimized on these points as a function of all 
other coordinates (some constraint relaxation over the other degrees of 
freedom thus being allowed for). Such maps are very useful to characterize the 
possible conformers {those of lower energy} and the probable low energy 
interconversion pathways {Figure 5.18). Maintaining one or several internal 
coordinates (geometrical parameters) fixed is easily performed by assessing 
very high values to the corresponding force constants. In such studies of energy 
profiles, facilities are given with the "dihedral angle driver" option, which 
allows one to fix one or two dihedral angles at selected values (a warning about 
the use of this technique on endocyclic dihedral angles was given by Jaime 
[114]). Constraints may be also introduced in the Newton Raphson matrix. 
Some packages allow for maintaining symmetry within groups [115], which 
can significantly speed up the optimization process or for simultaneously 
rotating several bonds at a time [116]. 

Rotational barriers can be similarly determined by minimizing steric energy 
for selected values of a dihedral angle {corresponding to stepwise variations) 
acting somewhat as a reaction coordinate. The results are fairly satisfactory as 
to the trends observed, although MM2 calculated values are lower than those 
observed. So for the barrier to internal rotation around Csp~-Csp ~ bonds, in 
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crowded open systems, Tiffon and Lomas [117] found a good linear relationship 
between the AG + from NMR and the MM2 results (representing, in fact, 
enthalpic terms), but with a slope of about 0.64, in agreement with previous 
results of Osawa and Musso, who quoted that in acyclic compounds, barriers 
appear as underestimated by a factor of ca. 0.6, the discrepancy increasing with 
the bulk around the rotating bond [3]. 

According to more recent work (MM3, EEF)[12-16, 32a], it appears that such 
discrepancies are largely removed thanks to a refined force field (see above). 
Note also that a non-negligible part of the deviations may be due to the neglect 
of entropic terms in previous MM2 predictions. 

Many studies have also been carried out on internal rotations in cyclic or 
polycyclic compounds, the interconversion processes now simultaneously 
implying several bonds. MM calculations are quite valuable in this field, since 
they give information on the geometry of transient conformations not 
attainable by experiment. 

5.5.2 Reactivity 

For some years, increased interest arose towards the interpretation of chemical 
reactivity. Predicting the rearrangement or interconversion pathways, 
evaluating structural effects on reaction rate constants, etc. prompted 
numerous applications of molecular mechanics methods. 

The principle of such approaches is straightforward for equilibrium studies, 
since it suffices to evaluate the thermodynamic parameters for both reactants 
and products. Molecular mechanics has recently been applied to two prototype 
Diels Alder reactions [99]: condensation of butadiene and ethylene and 
dimerization of butadiene. From the calculation of standard enthalpies of 
formation (for both products and reactants) and thermodynamic functions, an 
excellent agreement is obtained as to the evolvement of equilibrium constants 
on temperature. According to the authors, force field calculations can provide 
"a reliable alternative to laboratory methods" in terms of the thermodynamic 
equilibrium properties of gas-phase organic reactions. 

The approach can also be extended to kinetic aspects. As stated by Allinger 
[2], if the calculations (presented here on stable starting states) can be 
performed (with suitable changes)on transition states, some information can 
be gained about the energetics of the process. As for conformational 
interconversions, this will be performed by exploring the multi-dimensional 
potential energy surface for given values of some geometrical parameters. So 
troughs corresponding to stable products and gorge, leading to the formation of 
products [119], can be described. A few examples are now discussed. 

Solvo lys i s  rate  c o n s t a n t s  

The study of "true" chemical reactions, i.e. processes where bonds are broken 
and created, is somewhat more difficult than the study of rotational barriers, 



1 5 8  EMPIRICAL FORCE FIELD METHODS AND MOLECULAR MECHANICS 

o 

�9 ))V" Me II,,~a~., / Me 
. 

f , , ,  
3~ - _-" ~ ~  (c) H H H H 

~, , lr  

i 

0 

360 

240 

120 lI' 

I i I , I 
0 120 240 360 $~ 

(b) 

F i g u r e  5.18 Steric energy surface and conlormational map for diethylketone. Dotted 
lines represent interconversion pathways (from Coss6-Barbi [118]). 

since we have to deal with transition states which do not correspond to usual 
molecules. Appropriate models therefore have to be sought. 

However, if one compares a given reaction for a series of substrates, certain 
geometrical features of the transition state may be assumed constant, and the 
same is true for certain interaction mechanisms. This assumption allows for 
an easier description of the variations of the energetic factors within the series. 
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Solvolysis of tert-alkyl derivatives with a bridgehead-leaving group was the 
first reaction investigated. For such processes: 

RX -o R § + X- -o Products 

The charge developed in the transition state is large, and presumably does not 
significantly vary from one compound to another one, so that the reaction is 
"sterically controlled". Rates of reaction can therefore be fairly well 
represented by the difference in strain energy between the reactants and the 
transition state lcarbenium ion R§ To calculate this difference in strain 
energy, Schleyer et  al. [120] use the corresponding hydrocarbon as a model of 
the starting halogenated derivative {the difference in the interactions suffered 
by a hydrogen or a halogen within the molecules being reasonably assumed as 
constant for the whole series]. More complex is the representation of the 
carbenium ion R § In pioneering work, Gleicher and Schleyer [120] calibrated 
the force field parameters from a learning set of five rate constants on a 12 log 
unit scale. They used them further for the prediction, through linear 
correlation, of an 18 log unit reactivity scale. 

Subsequent work refined and completed the force field parameterization to 
represent carbenium ions, especially the Engler cation force field' or Muller 
parameters [121]. These, defined by successive adjustments to fit experimental 
data, lead to a good prediction of solvolysis rates {including families with 
varied leaving groupsl on a large reactivity scale. Quite noteworthy, because of 
the large scope covered, is the observation that solvation or ion pairing effects 
do not disturb predictions. 

These studies have recently been extended by Muller et  al. [122], who 
investigated solvolytic rates of varied classes of compounds {chlorides, 
nitrobenzoates, alcohols}. The authors showed that solvolytic rate constants of 
tertiary carbon substrates [including both bridgehead and non-bridgehead 
derivativesl can be rationalized by the computed steric energy difference 
between the incipient carbenium ion R § and the corresponding alcohol ROH. 

Radical thermolysis of alkanes constitutes another example of the use of 
MM calculations to predict rate constants: the transition state is assumed to be 
neighbour to the radical formed by bond breaking, and is approximated by the 
corresponding alkane {see, however, Lomas [4] and the references quoted for 
the choice of a good model of transition states). 

In some examples, reaction pathways have been determined by investigation 
of the stability of possible intermediates. So, in multistep carbenium ion 
rearrangements, the strategy was to calculate the energy of all the possible ions 
resulting from alkyl shifts in intermediates, and look for the reaction pathway 
of lowest energy {Figure 5.19}. The method appeared very useful to determine 
stabilomers of polycyclic or cage hydrocarbons, and proposed likely pathways 
for their isomerization. Among the other reactions investigated, we can quote 
catalytic hydrogenation of cyclic hydrocarbons: the reaction pathway depends 

l See references 10b, 65 and 69 in Osawa and Musso [3]. 
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upon opening either the longer and more strained bond in the substrate or that 
which relieves more strain. 

Numerous recent developments using more refined representations of the 
transition state have appeared in the last few years. They involve, among 
others, hydroboration, nitrile oxide cycloadditions, Diels Alder reactions, 
Claisen and Cope rearrangements, hydrogen transfer, lactonization, 
nucleophilic addition to carbonyls or Michael additions, radical additions to 
alkenes and boron enolate aldol reactions. Details can be found in the very 
well documented review by Esterowicz and Houk [123]. 

As basic hypotheses, it can be assumed that for a given type of reaction, 
breaking and forming bonds are fixed at some nearly constant lengths, leading 
to relatively constant transition state {TS) geometries, in agreement with 
quantum calculations, and that for such partially bonded systems, energy may 
be treated as an energy minimum [in fact, transition states correspond to an 
energy minimum in respect to all degrees of freedom except that 
corresponding to the reaction coordinate}. 

Simpler approximation uses the assumption that force constants are similar 
to those determined for neighbouring (true) molecules used as models. As to 
the geometry of the transition state, it can be derived from quantum 
mechanics. In the rigid TS model, atoms involved in bonding changes are given 
fixed positions and the attached groups are geometry optimized. A more 
refined model, the flexible TS model, optimizes all atom positions but requires 
the development of new [and often numerousl force field parameters. In 

- 17 .9  1.1 - 15 .8  - 6 . 6  
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F i g u r e  5.19 Carbenium ion rearrangement. The most probable pathway (bold arrows} 
is estimated from enthalpies of formation calculated for possible intermediates 
resulting from alkyl shifts and looking for the pathway of lowest energy {adapted from 
Osawa and Musso with permission [3]}. 
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another approach, TS is considered as corresponding to a saddle point of the 
potential energy surface. Parameters can be derived by interpolation between 
reactants and products. An approximate TS structure may also be determined 
from intersection of the potential surfaces of reactants and products [124]. 

Modelling a complete reaction path with the capability of describing any 
desired point of the reaction coordinate, and not only the transition state, is a 
still more complex problem, requiring a modified force field for accurate 
prediction in regions of highly stretched bonds. This was recently tackled by 
Peyman and Beckhaus [125]. For dimerization of radicals, they proposed a 
var iab le  force field where parameters characterizing the atoms involved in the 
bond-forming step are allowed to continuously vary according to the 
hybridization change. 

These applications mainly concern a pos ter ior i  studies to rationalize 
experimental results, but MM can be also useful for de n o v o  design: "What to 
make and how to make it" [126]. Predictions based on computed stabilities or 
the relative strain energy of intermediates can help in eliminating non- 
productive syntheses and give some information about the pathway to follow 
if several synthetic routes are possible (various examples can be found 
elsewhere [126]). We only quote here the work of Still et  al. [127]. They 
prepared non-macrocyclic host molecules (podands) able to bind alkali metal 
cations thanks to a pre-organization. Once synthesized, these compounds 
show the expected activity. 

As stated by Lipkkovitz and Peterson [126], thanks to the development of 
more refined force fields and the broadcasting of user-friendly programs, 
"application of empirical force fields in organic synthesis looks promising." 

5.5.3. Molecular associations 

Although initially proposed for organic derivatives, and originally devoted to 
the study of intramolecular forces, molecular mechanics has recently been 
extended to molecular complexes, and there is particularly now a substantial 
number of studies involving molecular systems associated with metal centres 
[89, and the references quoted therein]. 

This interest relies on the essential role of metal ions for the maintenance of 
living systems through various mechanisms: control of the transmission of 
nervous impulses (sodium}, secondary messengers (calcium), enzymatic redox 
processes (iron, copper}. These studies suggest that useful information about 
molecular recognition and its geometrical and energetical features can be 
gained in this way. 

Parameters necessary to describe these ion-molecule interactions are 
generally lacking in the usual force fields, particularly regarding non-bonded 
interactions for the ion and atoms with partial charges. The first task is 
obviously to define them according to appropriate protocols [128]. Fitting 
experimental or quantum results on simple model systems (such as 
M+-..O(CH3h for crown complexation, for instance} constitutes a possible way. 

The YETI program, oriented towards drug design applications on small 
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molecule-protein complexes, includes directional potential functions for 
hydrogen bonding, salt linkages and metal ligand interactions. These 
directional functions appear to give a more realistic picture of short range 
interactions with only a small increase in the number of variables to treat [88]. 
Inclusion of intermolecular interactions with the surrounding molecules have 
been also considered, in order to take into account lattice effects [104] and 
provides better comparisons with X-ray data. 

Host-guest complexation has been extensively studied. Kollman et  al. [129, 
130] discussed alkali cation complexes of 18-crown-6 and anisole spherands in 
terms of structural flexibility, ligand specificity and macrocyclic effect {Figure 
5.2o). 

O ..CH2" CH2" O- CH2"CH2..O\ 
/ 

CIH 2 (1 H2 
QH2 CH2 / R 

NO..  / 0  
(a) CH2-cH2- O-cH2CH2 J (b) R 

Figure 5.20 18-Crown-6 (a) and a typical anisole spherand molecule (b) (from Kollman 
et  al. with permission [129]). 

For the crown, several structures of comparable energy are found, in an order 
depending upon the dielectric constant, in agreement with crystallographic or 
NMR observations. However, in its complexed state, the crown exhibits a 
structural flexibility which allows it to adopt different conformations 
appropriate to its environment: the D3d structure (favoured for the K § complex} 
would lead to a too large "hole" for the Na cation (the complex prefers then a 
C, structure), whereas the larger Cs ion is moved out of the cavity (Figure 5.21 
and 5.22J. 

Although the K§ complex is intrinsically less stable than the 
Na+/crown complex, it has a more negative formation energy in aqueous 
solutions. This is due to the fact that the difference in hydration energies of 
Na § and K + is calculated larger in magnitude than the intrinsic difference of 
complexation energies. The selectivity observed therefore results from a 
balance between the energies of crown-cation interaction and cation solvation. 

Calculation on cation/crown/water shows that the crown shields cations 
from H~O (decreasing their affinity for water} and so facilitates ion transport 
through hydrophobic environments (membranes, etc.). At last the enhanced 
affinity of crown compared to an open homologous chain is attributed to the 
greater stability of conformations other than those that can effectively interact 
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Figure 5.21 C, and D, structures of 18-crown-6, viewed approximately perpendi- 
cularly to the mean molecular plane (from Damewood et  al. with permission [128]). 

with the cation for the open-chain derivatives and a better preorganization of 
cyclic systems for binding a guest ("macrocyclic effect"} [129, 130]. Similar 
conclusions come from the study of anisole spherands, where flexibility is 
almost non-existent and which exhibit a still greater specificity. 

Owing to these exceptional complexation capabilities, the interaction of 
crown ethers with neutral molecules {e.g. nitromethane, acetonitrile) was 
recently investigated [128]. In these systems, the overwhelming coulombic 
forces existing in charged complexes are absent and molecular complexation is 
controlled by weaker interactions {van der Waals, H-bonding or dipole-dipole 
forces}. Acting as a guide, the comparison between experimental complexation 
enthalpies and the computed complexation energies {difference in energy 
between the complex and the two isolated partners] assesses the reliability of 
the approach. Among the more salient conclusions, an intrinsic positive 
cooperativity is calculated for the formation of the 2-1 complexes in solution, 

A c 

Figure 5.22 Complexes of crown with Na ions (A), Cs ions (B) and the 2-1 complex 
with nitromethane (C}. The guest ions or molecules are shadowed {from Damewood et  
al. [128] and Wipff et  al. with permission [130]). 
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i.e. the formation of the 1-1 complex preorganizes the host so that it is in the 
required conformation for 2-1 complexation. Binding energies are therefore 
more favourable for this process than for 1-1 complexation. The reverse trend, 
sometimes observed, results from the importance of entropic and solvation 
terms in such systems. 

The influence of host-guest preorganization and complementarity have also 
been tackled recently by molecular mechanics and molecular dynamics on the 
example of cation complexes of a cyclic urea-anisole spherand [131]. The "size- 
match selectivity" concept was extensively studied by Hancock [132]: "a 
metal ion will form its most stable complex with the member of a series of 
macrocycles where the match between size of metal ion and macrocyclic 
cavity is closest." The effects of the chelate ring size seem to outweigh the 
effects of the macrocycle size regarding complex stability. Such studies 
confirm the potential power of molecular mechanics approach to gain some 
insight about host-guest interactions. 

Several recent studies report the use of MM calculations to transition metal 
complexes. These coordination compounds were mainly investigated with the 
Boyd program [90] because desired coordination numbers can be handled. 
However, it does not take into account electrostatic interactions. This term is 
explicitly considered in MM2 but the program has to be modified to cope with 
coordination numbers higher than 4 [133]. The stability of hexacoordinate 
complexes of cobalt (III) and nickel Ill)with aliphatic amines is related to the 
strain energy accompanying complex formation from a hypothetical 
"standard" state [see also 134,135]. 

Whereas in the preceding cases the usual procedures can be carried out 
with adequate parameterization for the metal environment, complexation 
with lanthanides, leading to heptacoordinate complexes, constitutes a more 
difficult problem. Natural bond angles (ligand-metal-ligandl are not easy to 
define, and the geometry is largely dependent upon ligand-ligand 
interactions. In the MM2 metal-extended force field IMM2MX), bending 1-3 
interactions about a metal atom centre are omitted and replaced by van der 
Waals-type interactions between the corresponding atoms [89]. This method, 
which emphasizes steric interactions about the ligating atoms, was 
employed to determine the minimum energy conformations. It successfully 
reproduces the essential features of heptacoordinate lanthanide complexes 
{Figure 5.23). 

Usual MM methods 

MM2MX method 

Angle Bending van der Waals 

Yes No 

No Yes 

Figure 5.23 Usual MM and MM2MX method comparison. 



TRENDS AND PROSPECTS 165 

Iron c o m p l e x a t i o n  

Lack or excess of iron in plants or humans causes severe diseases; hence the 
interest for complexing reagents able to control the concentration level of this 
element and able to carry it in living systems. MM was used to investigate the 
stability of new Fe(lll) chelates containing two carboxy ~-catechol moieties 
separated by a spacer of several methylene units [136, 137]. After deriving 
appropriate parameters for the ferric ion, energy minimization with the EMO 
program [138] indicated that the more stable chelate is obtained for four 
methylene subunits (Figure 5.24). 

I i 
HC---(CH Z)n-- C ~ 
/ 

HOzC COzH 

s 

li" 
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/ 
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. . . . .  
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40 
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Figure 5.24 Variation of the strain energy for the chelate vs. the methylene number 
(from Bouraoui et al. with permission [136, 137]). 

5 . 6  TRENDS AND PROSPECTS 

The high precision of MM is largely supported by comparison with other 
(quantum) approaches as well as experimental data (X-ray crystallography). 
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Table 5.2 Engler et  aI. force field for saturated hydrocarbons.  

Bond Stretching: 
E(r) .. 0.5 k ( r -  ro) 2 

10 -2 k, 1,0 
C - H  6.63 1.100 
C-C  6.33 1.520 

Angle Bending: 
E(O} ,, 0.5 k, (0 - 0o} 2 [1 - 0.0096 I 0 - Oo I ] 

~ 

H 

C 

R' R" 

C ~  

R' R" 

R R' R" 
~ R  C C C 

C C H 
C H H 
H C C 
H C H 
H H H 

R 
H C C 
H C H 

for l 0 - % 1  < 25" 

Oo 
109.5 
110.1 
110.4 
109.2 
109.0 
109.5 
109.1 
109.2 

10 2 k, 
2.50 
2.50 
2.50 
1.75 
1.75 
1.75 
1.45 
1.45 

Tors ion:  

H-C-C-H 
H-C-C-C 
C-C-C-C 

E(o) - 0.5 k. (1 + cos 3e} 

k. 
0.69 
0.69 
0.45 

N o n - b o n d e d :  

H �9 " " H 

C . . . H  
C . . . C  

[(:e,,_,,o, 1 _,,i,m,, ] E{nb)=l_6/a a 

a 102~ r m  

12.0 4.00 3.20 
12.0 2.99 3.35 
12.0 9.50 3.85 

CH3 
General  increments  
heats of format ion  -10.82 

Strain free increments  
(to be subtracted) -10.05 

CH2 

-5.88 

-5.13 

CH 

-2.82 

-2.16 

-0.82 

-0.30 

E Kcal/mol.  distances in A ~ angles in ~ 
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This type of method should continue to play an essential role in structural  
analysis, owing to the increasing interest devoted to large biomolecules (e.g. 
proteins) for which it is necessary to have at one's disposal a calculation 
method that  is fast and easy to implement .  

Refinement of the force field (for varied functional groups) and the definition 
of new parameters for atoms not previously considered, are among the 
developments logically expected. 

Another way in which to speed up calculations should be the definition of 
transferable structural  primitives, in place of the data derived from X-rays 
lwhich are somet imes  disturbed by packing effects). For complex systems, this 
set of primitives should allow us to quickly guess more realistic geometries to 
start the opt imizat ion processes. Expert systems and databases are just 
beginning to be introduced in this field. 

APPENDIX: ENGLER'S FORCE FIELD FOR SATURATED 
HYDROCARBONS 

In Table 5.2 we reproduce the force field of Engler et aI. [61]. Although more 
refined force fields have been proposed since, we retain it for i l lustration 
because of its simplici ty (no interaction terms, etc.), and its good performance 
for most  of the usual cases. For some indications about commonly  available 
packages, see elsewhere [3, 4, 138-140], and for the way in which a calculation 
is carried out [140]. 
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For the sake of clarity, it is important to open this chapter by marking the 
difference between what physical chemists use to define molecular modelling 
and simulation. Indeed, there is a significant distinction to make between 
these two concepts, and a clear understanding of simulation techniques should 
begin by differentiating them from general modelling tools. Roughly speaking, 
a model is nothing else than a simplified representation of a system or of a 
process so as to better understand it. Taking the example of a weather forecast, 
data collected from ground-based measurements, upper-air readings and 
satellites provide the necessary information to build a model of the 
atmosphere at a given time. In molecular sciences, however, most models are 
microscopic, that is they have been obtained from computations performed on 
microparticles, i.e. on a single molecule or on a system comprising a few 
molecules. To this end, previous chapters have shown that both quantum 
chemistry and classical mechanics methodologies may be used. But in any 
case, the results lead to simplified representations of the real microscopic 
world. Molecular modelling may be defined, therefore, as the construction and 
application of such microscopic models to rationalize molecular structure, 
function and interaction. Of course, molecular modelling allows us to 
calculate both measurable and unmeasurable properties, and the former may 
be compared with experiments. Then, according to van Gunsteren and 
Berendsen [1 ], "the comparison validates or invalidates the model that is used. 
In the former case, the model may be used to study relationships between 
model parameters and assumptions or to predict unknown or unmeasurable 
quantities." For instance, the structural features of the crambin protein have 
recently been predicted using the MM2 model (see Chapter 5)[2]. 

On the other hand, molecular simulation may be defined as the 
determination of the macroscopic properties of a system using the 
microscopic model which has been constructed to describe the main 
interactions between the particles of which it is made. Simulation techniques 
are based on the laws of statistical mechanics, which give us the theoretical 
bases to make the connection between microscopic modelling and 
macroscopic behaviour [1 ]. Using these techniques, it is thus possible today to 
study the thermodynamic, structural and transport properties of ensembles of 
atoms or molecules, namely the bulk properties at finite temperatures of 
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solids, liquids and gases [3]. Generally speaking, two kinds of molecular 
simulations, also known as computer experiments, may be performed: {iJ the 
purely stochastic Monte Carlo method which randomly samples the 
configurational space of the system, leading, in a probabilistic mode, to static 
properties such as the lowest energy structure of a liquid; and (iiJ the 
deterministic molecular dynamics method, producing trajectories in the 
configurational space and leading to both static and dynamic properties such 
as the distribution of kinetic energy or s e l f - d ~ s i o n  coefficients. Coming back 
to crambin, a molecular dynamics simulation of this protein would allow us to 
study the flexibility of the backbone or the structure of low-lying local minima 
and the energy barriers separating them. Finally, to vividly illustrate in more 
general terms the difference between modelling and simulation, we may turn 
to the example of a weather forecast outlined above. When starting from the 
static model of the atmosphere constructed from data collection, the 
calculation of the evolution of the model as a function of time {i.e. a time- 
dependent simulation) will allow us to predict temperature, wind velocities, 
humidity, cloud formation, etc., at a given place. Weather forecasting is 
therefore the result of a simulation of the behaviour of a model as a function of 
time. 

6.1 MONTE CARLO SIMULATIONS 

Monte Carlo methods are well known in applied mathematics as techniques 
based on the random sampling of large sets of numbers, which automatically 
accounts for the origin of their name. In particular, the Monte Carlo approach 
is well suited to multidimensional integrals not amenable to numerical 
integration and where the boundaries are complicated, the integrand is not 
strongly peaked in very small regions, and relatively low accuracy is 
acceptable [4]. The basic principle of Monte Carlo integration consists of 
evaluating the function at a random sample of points and estimating the 
integral based on that random sample {Figure 6.1}. The problem is that the 
Monte Carlo method is slow to converge as the error is of the order of n -~ 
where n is the number of points in the random sample. 

In Monte Carlo simulations of molecular systems, sequences of con- 
figurations are generated with a given probability distribution, and thermo- 
dynamic properties of the system, such as free energies of solvation, are 
calculated as averages over these configurations. A good description of the 
basic features of the Monte Carlo method as applied to molecular simulations 
has been reported by Haile [5]. It may be summarized as follows. Let us assume 
that we have a system made of a fixed number of particles N occupying a fixed 
volume V at a constant temperature T. Suppose we would like to calculate the 
equilibrium value A of a thermodynamic quantity A, for example the potential 
energy function of the system, where A = A{rN), r N figuring the set of position 
vectors of the particles It , ,  r~,..., r,). In this case, A represents the 
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Figure 6.1 Monte Carlo integration. Random points are chosen within the area A. 
The integral of the function f is estimated as the area of A multiplied by the fraction 
of random points that fall below the curve f. (from Flannery et al. with per- 
mission [21). 

configurational part of the internal energy of the system [3]. According to 
statistical mechanics, .4 is given by the average: 

- -  1 ) e _ W ~  . A = - ~ f . . . f A ( r  N 'dr, ..dr N (6.11 

where 13 = 1/kT, k being the Boltzmann constant, and Z the configurational 
integral: 

Z = ~...~ e-W~'~) dr,...drN (6.2) 

and U(r ~) is the intermolecular potential function, which is usually taken as 
the sum of isolated pair interactions u(r,)(neglecting three- and higher-body- 
terms}: 

i j<i 

where r, is the distance between i and j particles. 
Due to the 3N-dimensional character (don't forget that dr; = dxidy~dz~) of the 

integrals (6.1) and (6.2), it is not possible to evaluate them using standard 
numerical techniques such as the Gaussian quadrature or Simpson's rule. It is 
therefore necessary to resort to the Monte Carlo method. 

A naive implementat ion of the Monte Carlo method to our problem would 
consist of randomly moving the N particles within the cell representative of 
volume V and of building in this way a statistically meaningful 
configurational sample. However, such a procedure would be inefficient 
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because the Boltzmann factor e -~v~'~ would be very small for a large number of 
configurations r N, thus leading to many of them bringing no contribution to 
the integral. An elegant solution to this problem has been suggested by 
Metropolis et al. [6] in the form of what is known as the importance sampling 
scheme. 

In a Metropolis Monte Carlo simulation of our system, the following steps 
are performed: 

1. Assign initial positions r, to the N particles and calculate the system 
energy U using (6.3}, the u(r,) pair potentials being derived from the various 
components of a usual force field (see Chapter 5). 

2. Construct a new configuration by arbitrarily choosing one particle and 
moving it by a random displacement from position r to r'. Calculate the 
new potential energy U' corresponding to this configuration. 

3. If U" < U, accept the new configuration (i.e. allow the move to occur) and 
continue the process (i.e. proceed to step 2). 

4. If U' > U, the new configuration is accepted with a probability proportional 
to e -~U, where AU = U"-  U, that is select a random number i in the interval 
(0, 1). Then: 

if e -~U > i, accept the new configuration and continue the process (i.e. 
proceed to step 2); 
if e -~U < i, reject the new configuration (i.e. do not allow the move to 
occurl, count the old configuration as a new one and proceed to step 2. 

For each configuration accepted, the integrand of equation {6.1) is evaluated 
and its value accumulated in the running sum A. Several million 
configurations are generally needed to obtain statistically meaningful 
averages, if m is the total number of configurations considered, one therefore 
has as the result of the Monte Carlo evaluation of integral (6.1): 

m 

~-= __1 X A ' {6.4) 
/ T /  ~=! 

with A, = A(ry), rY being the set of position vectors after the ith move. 
It has been found that some properties converge more rapidly than others in 

Monte Carlo simulations [7]. For example, heat capacities require in general a 
much larger ensemble sampling than internal energies. Usually, the step size 
A, defined as: 

r '*'~'" = r *'~'" + A-~*'~" 
i i (6.s) 

where ~*~~ is a vector constructed from a set of three random numbers taken in 
the interval (0, 1}, is chosen so that approximately 50% of the attempted 
moves are accepted, but this is undoubtedly a critical parameter: large A values 
may lead to poor acceptance scores, whereas small A values severely restrict 
the sampling of configuration space, which results in slow convergence of the 
properties. This explains why, for large systems exhibiting many degrees of 
freedom such as proteins, Monte Carlo methods are generally less efficient 
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that molecular dynamics techniques. Consequently, Monte Carlo methods 
have been generally applied to systems where they are more effective, such as 
liquids or systems in solution, and we shall review here some typical studies 
in this field. 

Actually, a prerequisite for performing reliable Monte Carlo simulations lies 
in the determination of accurate intermolecular pair potential functions u(r,) 
(equation (6.3)). To this end, a first approach consists in deducing them from a 
fitting of the parameters of simple potential functions to accurate ab initio 
potential energy surfaces calculated for two-particle or bimolecular 
interactions. An alternative is to fit the parameters involved by the u(r,) 
functions to experimental data deduced from X-ray studies, lattice dynamics 
investigations, infrared and NMR spectroscopic measurements, etc. [1]. In any 
case, the choice of a strategy in using or determining the best u(r,) functions 
depends upon the system investigated and on the quality of the force fields 
available, such as MM2, MM3, AMBER, CHARMM, etc. (for this latter point, 
the reader is referred to Chapter 5 ). For teaching purposes, a very simple Monte 
Carlo simulation of a liquid may be performed assuming it is made of hard 
spheres, i.e. of hard bodies interacting through a potential energy function of 
the form [5]: 

o 

r. 
u(r.) = r . . > ( ~  

(6.5t 

where o is the diameter of the sphere. However, this potential is too simple to 
lead to a reliable simulation of real liquids. 

One of the systems which have been mostly investigated using Monte Carlo 
simulations is undoubtedly liquid water. This is due to the importance of 
water itself, and of aqueous solutions both in chemistry and life sciences. The 
first Monte Carlo simulation of the properties of water was performed in 1969 
by Barker and Watts [8]. These authors used an analytical, orientation- 
dependent additive pair potential energy function derived by Rowlinson [9], 
and they considered 64 water molecules in a cube with periodic boundary 
conditions at the experimental density at 25~ In any molecular simulation, it 
is necessary to first equilibrate the system so that it becomes independent of 
initial conditions. In other words, the initial stage of the simulation, be it of 
the Monte Carlo or molecular dynamics type, consists of allowing the system 
to reach the equilibrium after a sufficient number of steps, and to "forget", so 
to speak, how it was prepared in the initial conditions [5]. In the case of the 
Monte Carlo simulation of water performed by Barker and Watts, equilibration 
was reached after sampling of 120000 configurations. Then the simulation 
itself was carried out by generating 110 000 additional conformations, leading 
to satisfactory results as far as both the thermodynamic energy (referred to 
separate molecules): -8.36 kcal/mol (experimental value: -8.12 kcal/mol) and 
the specific heat: 20.5 cal/deg.mol (experimental value: 18 cal/deg.mol)are 
concerned. 

An interesting feature of molecular simulations is that at each step the 
positions of all the particles are known. One may thus deduce a "local 
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structure" of the system, i.e. the organization of the particles around one 
another. In mathematical terms, one uses distribution functions to describe 
how the particles are distributed in the volume. The most popular of these 
expressions in the radial distribution function g(r), which is proportional to the 
probability of finding two particles, i.e. in liquid water, two H~O molecules, 
separated by distance r • ar  [5]. The function g(r) may be seen as a measure of 
the extent to which the structure of the liquid deviates from a totally random 
distribution [10]. As it is possible to deduce g ( r ) f r o m  X-ray or neutron- 
scattering experiments, the comparison with the corresponding function 
obtained from the simulation is important as it allows the user to estimate the 
validity of his calculations. Such a typical radial distribution curve obtained 
from neutron scattering experiments for liquid argon [11] is shown in Figure 
6.2. It can be seen that the probability of finding an argon atom at a distance of 
about 4 A from a given central atom is maximum, whereas some additional 
features are visible at larger distances (7, 10, 13 and 17 A). All the maxima 
correspond to the various shells of neighbours surrounding a given atom in the 
liquid. Five successive shells may therefore be distinguished before g(r)tends 
to unity, at large distances, which is characteristic of a random distribution. By 
integrating g(r) along the r variable, the number of neighbours in each 
successive shell may be obtained. 

Turning back to the early simulation of liquid water by Barker and Watts [8], 
the radial distribution function they report is in reasonable agreement with 
experiment {Figure 6.3). The number of neighbours calculated within 3.5 A is 
about 6.4, which is to be compared with the experimental value 5.1. This is 
apparently due to the fact that the pair potential function used overestimates 
the bonding character of the water dimer. It is therefore natural that several 
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Figure 6.2 Radial distribution function obtained for liquid argon at 85 K from 
neutron-scattering experiments (from Yarnell et al. with permission [11 ]). 
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Figure 6.3 Radial distribution function of water at 25~ Solid line, experiment; A. 
calculated from 54 000 configurations; I1" calculated from 110 000 configurations (from 
Barker et al. with permission [8]). 

improved potentials have been reported after this very first investigation. If we 
concentrate on those which have been used in Monte Carlo simulations, 
significant progress was made in 1976 by Lie et  al. [12], who employed a high- 
quality water-water interaction pair potential obtained from ab i n i t i o  
configuration interaction calculations. 

The Monte Carlo simulation of Lie et  al. [12] was performed on a cube of 343 
water molecules with periodic boundary conditions at the experimental 
density at 25~ After equilibration, the number of configurations used in the 
sample set was 600 000. In view of the quality of the interaction potential, it is 
not surprising that the O-O radial distribution function calculated by Lie et  al. 
is in very good agreement with experiment (Figure 6.4). A similar result has 
also been obtained for O-H and H-H radial distribution functions, though 
some discrepancies between theory and experiment are observed for 
intensities. From integration of their O-O radial distribution curve, Lie et  al. 
deduce an average number of nearest neighbours of 5 around a given H~O 
molecule, which is in satisfactory agreement with the experimental value of 
5.1. Thermodynamic properties, however, exhibit some discrepancies with 
respect to experimental values, which allows Lie et  al. to conclude that three- 
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Figure 6.4 Comparison between simulated and experimental 0 - 0  radial distribution 
functions of liquid water {from Lie et al. with permission [12}}. 

body {and possibly four-body) interactions should be included in the 
interaction potential [12]. 

Many further Monte Carlo simulations of liquid water have appeared 
since the pioneering studies mentioned above were reported {for reviews, see 
elsewhere [13, 14]). Using more and more refined pair potentials, most of 
them show an even better agreement with experiment than the study of Lie 
et  al. [12], while, in addition, allowing us to perform simulations at various 
temperatures and pressures. On the other hand, Clementi has derived three- 
body and four-body interactions potentials which provide a sound basis to 
perform high quality simulations [15]. In particular, a new potential 
obtained by fitting ab in i t i o  quantum chemical interaction energies, 
calculated at a high level of theory, has been shown by Corongiu and 
Clementi to accurately reproduce many structural and dynamical data of 
water from molecular dynamics calculations [16]. On the whole, one may 
assert without any overstatement that both the microscopic structure and 
the thermodynamical properties of liquid water are accessible today within 
the experimental error margins through Monte Carlo or molecular dynamics 
simulations. 

After liquid water, the next steps in Monte Carlo applications are obviously 
to study aqueous solutions of simple solutes such as CH~ [17] or Ar[18], and of 
more complex systems such as dimethyl phosphate anion [19]. The 
calculations of Swaminathan et  al. [17] on a dilute aqueous solution of 
methane are interesting as the solute is a prototype of a nonpolar molecule 
dissolved in liquid water, and such a study is of great value in clarifying the 
role of water in maintaining the 3D structural integrity of biological molecules 
in solution. Without going into too many details, let us mention that this 
Monte Carlo simulation has been performed for a system made of one methane 
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and 124 water  molecules at 25~ at a density of 1 g/cm 3, using several 
analytical functions representative of ab i n i t i o  calculations carried out at both 
SCF and MP2 levels. Integration of the radial distribution function for the 
centre of mass of water molecules with respect to the centre of mass of 
methane  leads to an average water coordination number  of 19.35, which is in 
satisfactory agreement wi th  previous simulat ions [20l. This study in addition 
brings useful information as to the structural features of the system: the local 
solution environment  of methane  is likely to be a "distorted defective 
con t inuum pentagonal clathrate structure" [171 (Figure 6.5). 

Finally, Swaminathan et  al. show that, when quantifying the structural  
perturbations in the solvent, an increased four coordination is found, which 
reveals a stronger binding among H,O molecules in the methane-water  system 
as compared to bulk liquid [17]. This feature is characteristic of the 
hydrophobic interactions taking place in aqueous solutions of nonpolar 
residues. 

Another i l luminat ing application of Monte Carlo s imulat ions in chemist ry  
has been performed by Alagona et  al. [191 for the dimethyl  phosphate anion 

Figure 6.5 Stereographic view of methane and its first hydration shell taken from a 
structure with high statistical weight. (a) Disposition of the centres of mass of water 
molecules about methane with the quasiclathrate cage delineated; (b) disposition of 
water molecules about methane in the structure. Relative sizes of molecules scaled 
down for greater legibility; methane represented as a sphere {from Swaminathane et al. 
with permission [17]). 
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(DMP) (CH3ObPOd in water. This molecule, which is a fragment prototype of 
biologically important systems, is interesting because it exhibits solvation 
sites which are very different in character: hydrophobic (CHa), polar (ester O) 
and ionic (terminal O). In addition, it has two torsional degrees of freedom r 
and r (Figure 6.6), which represent one of the main sources of flexibility of 
nucleic acids. It was therefore of particular interest to investigate the solvation 
process of DMP and, in particular, the conformational features of solute- 
solvent interactions. Alagona et al. used in their simulation a system made of 
DMP and 216 water molecules and intermolecular pair potential functions 
consisting of electrostatic and van der Waals terms [19]. 

(-) 
Nct ~0 . . . . . .  CH 3 

P 

(3"" ....... r ~CH3 

Figure 6.6 The r and r torsional angles of DMP molecule. 

In view of the difficulty of performing an adequate sampling of (r r 
conformational probabilities in DMP, the two most stable forms of DMP in gas 
phase, namely g+,g+ (r = r = 75") and g,t (r = 75", r = 180"}, were chosen to 
carry out two different Monte Carlo simulations. In addition to many 
statistical analyses of the results, simulation techniques were used to study 
the motions of the system particles by interpolating between various 
structures. A ligand displacement reaction is observed between 500 000 and 
750 000 steps in the g,t simulation, in the sense that one water molecule 
coordinated to a terminal oxygen moves away to make place for an incoming 
second shell solvent molecule {Figure 6.7}. 

The coordination number of each of the terminal oxygen atoms is close to 
three, which is in agreement with previous calculations. As to the phosphate 
ester oxygen, water typically forms slightly more than one (weaker} hydrogen 
bond with it. Finally, the hydrophobic methyl groups lead, as expected, to large 
gaps in the water structure around them. Even though this study suffers from 
some deficiencies, such as the limited "umbrella" sampling of the (r r 
potential energy surface of DMP, the results show that Monte Carlo 
simulations are able to lead to a good description of the various hydrogen 
bonding interactions occurring between the different groups of DMP and 
water, provided that a flexible enough pair potential function is used. 

After Monte Carlo applications devoted to simulations of water or aqueous 
solutions of simple solutes, let us turn to a study of the effects of hydration on 
the course of a chemical reaction. In a series of pioneering investigations, 
Jorgensen et al. have indeed performed Monte Carlo simulations of solvated 
reacting systems such as the SN2 reaction between chloride ion and methyl 
chloride [21, 22], and the nucleophilic addition of hydroxide ion to 
formaldehyde [23]. We shall limit ourselves here to summarize the results of 
the first of these two investigations. 
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Figure 6.7 {a) Stereoscopic v iew of the water molecu les  lying near the anionic 
oxygens of g,t  DMP after 5 x l0 s steps {top}; (b} same as (a) after 7.5 x l0 s steps {centre}; 
{c) same as (b)with a different viewpoint and all the water molecules included 
{bottom}. After 5 x l0  s steps, water 150 is coordinated to the anionic O2 (a} and 2.5 x 
10 s steps further (b}, water 11 has taken its place near that oxygen {from Alagona et al. 
with permission [19]}. 

Bimolecular  S~2 reactions such as C1- + CH~CI'~CH~C1 + CI'- are prototypes 
of m e c h a n i s m s  w h i c h  are strongly inf luenced by the m e d i u m ,  to the extent  
that so lvat ion may  affect even the qualitat ive nature of the reaction [22]. For 
example,  the S~2 reaction depicted in Figure 6.8 is k n o w n  to exhibit  a double 
wel l  potent ia l  energy surface in the gas phase, whereas  the corresponding 
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Figure 6.8 Schematic representation of the C1- + CH~CI' -o CHaCI +CI'- S.2 reaction. 

profile is unimodal in solution [21]. In other words, two symmetric minima are 
expected to be found in the gas phase on the energy profile expressed as a 
function of the reaction coordinate rc = rcc,, rcc,, corresponding to the 
electrostatic favourable interactions characterizing these ion-dipole 
complexes. These minima are separated by a symmetrical transition state 
(rc = 0) which is at the origin of the activation energy or intrinsic barrier 
required for the S~2 reaction to occur (see below). On the other hand, when the 
reaction proceeds in aqueous solution, desolvation of the ion somehow 
compensates the ion-dipole attraction and the minima are expected to 
disappear, thus leading to a unimodal energy profile. Simultaneously, the 
activation energy should significantly increase due to a weaker solvation of the 
transition state with respect to intermediate structures, which may be 
attributed to a larger delocalization of charge in the transition state. 

Chandrasekhar et al. have therefore performed a three-step investigation of 
this prototype S~2 mechanism: (i) determination of the gas-phase reaction 
surface using ab init io calculations; (ii) development of potential functions to 
describe solute-solvent interactions; and (iii) Monte Carlo simulations of the 
reaction in aqueous solution [22]. Whereas the ab init io calculations of the gas- 
phase energy profile have been performed at the SCF level using the 6-31G* 
basis set, step (ii) has been carried out with pairwise additive potential 
functions made of electrostatic and 6-12 van der Waals terms [22]. To reduce 
statistical errors, the Monte Carlo simulation of the S,2 reaction profile in 
solution has been performed by determining the solvent-averaged potential 
mean force, which represents the relative free energy of the system as a 
function of rc. To this end, a system made of the solute cluster and 250 water 
molecules at 25"C and 1 atom was constructed. The results, presented in 
Figure 6.9, are totally consistent with experiment. 

Indeed, for the gas-phase energy profile, a complexation energy of 
-10.3 kcal/mol and an activation barrier of 13.9 kcal/mol have been calculated, 
whereas the corresponding experimental values a r e - 8 . 6  [24] and 11.6 + 
1.8 kcal/mol [25] respectively. As expected, the calculated potential of mean 
force representative of the reaction in solution is markedly different from the 
gas-phase profile. Part of the difference is, of course, due to the fact that the 
former is a free energy curve while the latter describes the change in internal 
energy for a vibrationless system at 0 K, but the trend is essentially correct: the 
Monte Carlo simulation strongly suggests that S,2 energy profiles are 
unimodal in aqueous solution with a large increase in activation energy due to 
solvation. Actually, the theoretical free energy of activation (26.3 _+ 
0.5 kcal/mol) is in quantitative agreement with the experimental value of 
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Figure 6.9 Calculated internal energies in the gas phase (dashed curve) and in solution 
{solid curve) for the system [CI'CHaC1]- as a function of the reaction coordinate rc. (from 
Chandrasekhar et  al. with permission [227]). 

26.6 kcal/mol [26]. The enhanced barrier in solution may undoubtedly be 
attributed to a smaller solute-solvent attraction for the charge delocalized 
transition state than for the separate reactants. As for the other Monte Carlo 
simulations reviewed here, the aqueous solution calculations of the S~2 
mechanism similarly lead to a coherent description of the structural features 
of the various shells of water molecules around the solute cluster along the 
minimum energy reaction path [22]. This investigation therefore represents a 
good example of the wealth of information which may be deduced from Monte 
Carlo simulations of complex chemical processes in solution. 

6.2 M O L E C U L A R  D Y N A M I C S  S I M U L A T I O N S  

Molecular dynamics (MD} simulations date back to 1957, with the pioneering 
study of a simple fluid made of two-dimensional hard disks performed by Alder 
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and Wainwright [27, 28]. Originally designed to investigate relaxation 
phenomena and transport properties in liquids, MD simulations rapidly 
emerged as a powerful tool to calculate structural and thermodynamic 
properties of complex liquids, molten salts, crystals, polymers and proteins in 
solution [1, 3, 5, 7, 10, 15]. Actually, this development is due to a large extent 
to the spectacular progresses recently witnessed in both computer hardware 
and software, which allow us today to perform realistic simulations of systems 
as large as an enzyme surrounded by 3000 water molecules [29]! 

As opposed to the Monte Carlo technique, a molecular dynamics simulation 
is a deterministic procedure which consists of sampling the configurational 
space by simultaneous integration of Newton's classical equations of motion 
for all the atoms i of the system: 

m, d2r~(t) = d t  ~ F,(t) i=  1,.. . ,N (6.6) 

where m, is the mass of atom i, r,(t) is the position of i at time t and F,(t) is the 
force exerted on i by the other N-1 atoms at time t. 

For each atom i, the force F, is calculated at each time t as the negative 
gradient of the intermolecular potential function (6.3): 

F,= - dUir,, r~,..., r~) (6.7) 
dr, 

which implies that U is a differentiable function of the atomic coordinates r, 
[1]. 

We see that, as in Monte Carlo simulations, the knowledge of the 
interaction potential U is an essential element in a MD study. However, 
instead of a random displacement of the atoms and of a Boltzmann sampling of 
the conflgurational space, the atoms move, in MD calculations, according to 
the laws of Newtonian mechanics, and the conflgurational space is sampled as 
a function of the time evolution of the system. Indeed, as equations (6.6) are 
integrated numerically by using small time steps At of the order of 1 fs (1 fs = 1 
femtosecond = 10 -'s s), the results of the calculation are the trajectories of the 
N atoms, i.e. a set of N r; values (i = 1,...,N) obtained for a set of n t~ values such 
as tk = tk_~ + at  (k = 1,...,n). As compared with Monte Carlo simulations, where 
properties were calculated as ensemble averages of functions depending on the 
particle coordinates only (see equation (6.4)), the expectation value of property 
A is calculated in MD as the time average: 

A = _1 A( t )d t  = -  A( t , )At  (6.8) 
"~ o "r i=l 

where x is the total simulation time x = n.At .  
In principle, when the system is at equilibrium, the property value .4 

(equation (6.8))does not depend upon the initial time to. In addition, the 
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knowledge of r,(t) at any time step allows one to calculate v;(t)= dr~{t)/dt, i.e. 
the momentum m,v,(t) of each atom. This explains why, in contrast with 
Monte Carlo calculations, MD techniques offer the possibility of performing 
averages of dynamic properties, in addition to static ones, such as thermal 
transport coefficients. Finally, note that if we assume the ergodic hypothesis 
to be valid, the time average value of property A calculated from MD 
(equation (6.8)) is the same as the ensemble average derived from Monte Carlo 
(equation (6.4)), provided adequate samplings of the configurational space have 
been achieved. 

Numerous algorithms have been proposed to integrate the MD equations of 
motion (6.6)[5, 7]. The most popular one is the finite-difference method 
suggested by Verlet [30], which computes atomic position vectors r, at time 
t + At from the forces and positions at previous times: 

F,(t) O[(At) 4 ] (6.9) r (t + At)= 2ri(t ) - r~(t- At)+ (At) ~ + 
i m .  

1 

where the final term is the truncation error varying as (At) 4, which means that 
the calculation of successive atomic positions according to the Verlet 
algorithm is exact up to third order. Note that velocities are not present in the 
Verlet formula; they are generally estimated using the half-step equation [7]: 

v (t)= ri{t + At)- r , ( t -  At) + O[(at)~] (6.10) 
i 2At 

The Verlet algorithm as expressed by equation (6.9) has proved to be stable 
provided a sufficiently small time step, of the order of 1-10 fs, is used [10]. The 
method is relatively fast as it requires only one evaluation of the force by step, 
which is by far the most time consuming task. On the other hand, the 
calculation of velocities {equation (6.10)) involves the subtraction of two 
numbers of comparable magnitude and one has to be careful so as to avoid 
rounding errors. Examination of equation {6.9} shows that the Verlet algorithm 
is a two-step method as it estimates r,(t + At} from the current position r,(t) and 
the previous one r,{t - ht). Hence, it is not self-starting: initial positions r,{0) and 
velocities v,(0)are not sufficient to begin a calculation, and one needs to know 
r,(-ht) [5]. In general, the choice of the initial configuration is made by 
assigning the initial values r,(0) to some lattice structure or to values taken 
from a previous simulation. The initial velocities are chosen from a 
Maxwe11-Boltzmann distribution at the appropriate temperature. Altogether, 
the Verlet algorithm presents the advantages being simple and reasonably fast. 
Its drawback is that in its original form it considers velocities as less important 
than positions, which is in conflict with the fact that phase-space trajectories 
are equally dependent upon positions and velocities. Among the other 
numerical integration methods of the MD equations {6.6), let us mention the 
Beeman [31] and leapfrog [32] algorithms, which have been derived from the 
Verlet scheme, and predictor-corrector techniques such as those devised by 
Rahman [33] and Gear [34]. 
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Starting from the velocities as given from equation (6.10), one may calculate 
the temperature T of the system at any time t by using the relation: 

1 N 

T(t) = (3N - c)k ,=, 
(6.111 

where 3 N -  c is the number of degrees of freedom, c being the number of 
constraints, and k is the Boltzmann constant. When sampling the 
configuration space, the advantage of MD over Monte Carlo techniques lies in 
the fact that the kinetic energy of the system [equation {6.11))allows it to 
surmount energy barriers of the order of k T per degree of freedom. It is 
therefore possible to artificially raise the temperature to search larger portions 
of the configuration space or, alternatively, to cool down the system to reach 
minima on the Born-Oppenheimer energy surface, that is to remove kinetic 
energy from the system, which is known as simulated annealing [35]. Indeed, 
in MD simulations, monitoring the two components of the total kinetic and 
potential energy allows the user to explore in detail the most interesting 
portions of the configuration space [1]. 

As an example, Plate IV summarizes the results of an MD calculation 
performed for a single molecule of n-butane (CH3-CH2-CH~-CH3J so as to 
carry out a conformational search of the global energy minimum using 
simulated annealing. The n-butane molecule was chosen as it is a standard 
hydrocarbon exhibiting several conformational isomers with different 
C-C-C-C torsion angles (co, Figure 6.101. The anti conformer (co-- 180 ~ is 
known to be the most stable, with an energy roughly 1 kcal/mol lower than 
the two gauche forms [(o = 60" and 240"), whereas the barrier height for the 
molecule to rotate from the gauche to the anti form is 8 kcal/mol. The 
purpose of the MD study of n-butane was to determine the capability of the 
simulated annealing technique to rearrange the molecular conformation from 
the gauche to the anti form. Examination of Plate IV shows that this is 
indeed the case: the simulation starts at 0 K with butane in a gauche 
conformation (co- 60") and the temperature is raised rapidly up to 800 K in 
0.1 psi1 ps = 1 picosecond - 10 -'2 s), the time step being 0.0005 ps. Then, after 
a short equilibration period of 0.4 ps, the system is cooled down to 0 K in 8 
ps. It is seen that, shortly after the beginning of the simulation, the torsion 
angle co changes abruptly to a value fluctuating around 180", i.e. the butane 
molecule has overcome the energy barrier separating the gauche and anti 
forms to end up in the latter conformation. This example illustrates both the 
efficiency of the simulated annealing technique and the importance of 
graphics to visualize conformational changes. 

To summarize, a MD simulation therefore allows one to generate a 
trajectory of the system's constituents until the desired time interval has been 
spanned, relevant trajectories of course being obtained after the necessary 
equilibration phase has been completed. In general, the simulation may be 
performed o v e r  1 0 s - 1 0  6 steps of 1 fs, that is on intervals of 10~-103 ps, 
depending upon the system investigated. Whereas many interesting motions 
of chemical systems will be achieved within this time scale, slow 
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Figure 6.10 (a) Newman projection of the molecule of n-butane CH3-CH2-CH2-CH3 
with definition of the torsion angle (o; {b) potential energy curve calculated for n-butane 
as a function of 00 using the MM+ force field of the HyperChem package [36]. 

processes such as the folding of a protein are still beyond the reach of such 
simulations. 

It should be noted, however, that simulation times are strongly dependent 
upon both the system investigated and the potential function used. For 
example, the large number of degrees of freedom in biomolecules makes the 
evaluation of potential energy and of its derivatives a computationally 
intensive task, which means that the simulation of such systems is generally 
limited to trajectories of 10-100 ps. This might well not be sufficient to 
reliably calculate average properties of the system, especially for those 
exhibiting longer relaxation times. Possibilities to lengthen the time scale of 
MD simulations are therefore the subject of intense investigation. Among 
them, let us mention the freezing of degrees of freedom which do not play an 
important role in the process simulated, the so-called stochastit~cation of 
degrees of freedom using, for example, the Langevin technique, the activation 
barrier crossing using the method of umbrella sampling, etc. [1]. A detailed 
presentation of these techniques is beyond the scope of this book, and the 
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reader should refer to specialized articles and textbooks for an in-depth 
presentation[l ,  5, 7, 37, 38]. 

In contrast with inhomogeneous systems such as proteins, for simple 
homogeneous ones, such as a box of water molecules, simulations of only a 
few picoseconds are generally sufficient to calculate accurate structural and 
dynamic properties [37, 39]. However, in addition to the length of the 
simulation, the size of the system investigated (i.e. the number of constituent 
particles) may also play an important role in the convergence rate of computed 
properties. For example, Lybrand quotes that "simulations performed on 
systems with too few particles, e.g. too few solvent molecules to properly 
solvate a solute, may give misleading results" [7]. 

A further problem arises in simulations of systems of (necessarily) finite 
size, namely that of boundary conditions. When simulating a molecule or a 
system of molecules in the gas phase, the simplest choice is obviously that of 
vacuum boundary conditions. For solids, liquids or systems in solution, one 
generally uses periodic boundary conditions to minimize edge or wall effects. 
In this case, a unit cell is constructed which contains the proper number of 
particles taken in the simulation, surrounded by identical image cells in all 
directions, i.e. six. Then, the particles in all image cells are constrained to 
experience the same forces and to follow the same trajectories as the particles 
of the central unit cell. When a particle moves through a wall of the central 
cell, it enters the cell with identical velocity at the opposite side at the 
translated image position. This process, which is called mirror image 
convention, thus allows the simulation of a continuous system using a finite 
number of particles [1, 7]. 

A great many MD simulations have been performed in the last 20 years on a 
broad range of systems, which makes it impossible to systematically describe 
here even a small fraction of them. Rather, we shall summarize in the 
following pages the main features of some of the most important and 
spectacular such investigations. 

As previously reported in the case of Monte Carlo calculations, liquid water 
has also extensively studied by MD simulations [10, 14, 15, 38, 39]. One of the 
first reference studies is undoubtedly that of Stillinger and Rahman, who used 
a two-body Lennard-Jones potential augmented by point charge electrostatic 
contributions representing the hydrogen bonding interactions [39]. In their 
calculations, Stillinger and Rahman simulate liquid water by using a cubic box 
of 216 H,O molecules subject to periodic boundary conditions and a time step 
of 2 x 10 -'+ s, such a short increment being due to the strength and directional 
character of the hydrogen bonds. Whereas the maxima of the O-O radial 
distribution functions are still predicted to be too strong by these calculations, 
the overall agreement with experiment is very satisfactory as far as 
thermodynamic properties are concerned. These results have been slightly 
improved by more recent calculations, such as those of Neumann [40, 41 ], who 
concentrated on the dielectric constant of water and its frequency dependence, 
and those of Clementi et  al. [15, 16, 42, 43], who investigated the dispersion of 
sound velocity and the behaviour of water in a 15 kbar range of pressure and a 
1000 K range of temperature. In particular, the latter authors have shown the 
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importance of introducing three-body and four-body contributions to their 
interaction potentials [44]. 

It is indeed seen in Figure 6.11 that the introduction of three-body forces 
leads to a significant improvement in the structural properties of liquid water. 
However, Fois et  al. have recently pointed out that effective two-body 
potentials deduced from fittings to experimental data lead to better results that 
those derived from ab i n i t i o  potential energy surfaces, even after inclusion of 
many-body terms, as far as the calculation of structure factors of liquid water 
by Monte Carlo simulations is concerned [14]. 

As for Monte Carlo simulations, the next step after liquid water in MD 
calculations is to investigate ions in aqueous solutions, and the subject has 
been reviewed recently by Marcus [45]. In addition to structural problems, 
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Figure 6.11 O-O, O-H and H-H radial distribution functions obtained from MD 
simulations using two-body and three-body potentials together with experimental 
results (from Wojcik et al. with permission [44]). 
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such as the number and position of water molecules in the first (and 
subsequent) solvation shells, MD methods may also lead to the calculation of 
enthalpies of formation of, e.g. X(H20)~, X = Li § Na § K § Rb+, Cs § F-, CI-, Br-, I-, 
n = 1-6 [46], which, in general, compare very well with experiment. Note, 
however, that this result has been obtained using a so-called polarizable 
electropole model for water, i.e. by introducing explicitly an induction term 
into the water-water and ion-w~iter potentials. As to the structure of the 
systems, Lin and Jordan have shown that, with the exception of Li § the larger 
the ion the fewer water molecules it coordinates in its first solvation shell, 
which correlates with the tendency of the systems to form unsymmetrical 
microclusters at 0 K [46]. 

Another important feature of MD simulations lies in their ability to 
calculate free energies, or more conveniently free energy differences between 
related systems. Indeed, free energies of molecular systems represent key 
thermodynamic properties which may be used to describe their tendencies to 
associate and to react by taking into account both enthalpy and entropy 
contributions [47]. The Gibbs free energy G, for example, is a state function 
whose variation upon a system change at constant temperature and pression is 
expressed as: 

aG = a H -  TaS (6.12) 

where AH and AS are corresponding enthalpy and entropy variations 
respectively, T being the temperature. 

Using statistical mechanics, G and consequently AG, may be calculated 
from the partition function, which involves a sum over all the Boltzmann- 
weighted energy levels of the system. This is quite impractical to implement 
in Monte Carlo or MD simulations, because of the difficulty in sampling 
adequately the configuration space [48]. Indeed, the sampling of configuration 
space should be enormous so as to incorporate the low-energy configurations 
which contribute the most in the direct calculation of the Gibbs free energy 
according to the formula: 

G = - k T l n ( e  -~v~ ) (6.13) 

where U(r N) is defined by equation (6.3) and ( ) refers to an ensemble average 
over the configuration space of all the possible states of the system. 

However, free energy differences between related systems A and B 
characterized by potential functions U^(r N) and Udr v) can be calculated as: 

AG=G~-G^=-kTln(e-Ot'~N')^ i6.14) 

where ,'x U ( r  N) = UB(r N) - UA(rN). 
The derivation of equation (6.14) is due to Zwanzig [49], and its meaning is 

the following: an ensemble of configurations is generated for state A and for 
each of them the expression e -~U~'~ is evaluated; then the result must be 
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averaged over the whole ensemble of configurations sampled for A. AG may be 
conveniently evaluated using equation [6.141, which is the basic formula of 
free energy perturbation calculations, as it is much easier to sample 
adequately a configuration space involving the average of the e -~v expression 
rather than e -w as implied by equation (6.13). 

As an application of free energy perturbation calculations, let us turn to an 
investigation of the hydration of superoxide (O~-1 by using a 216 molecules 
water box [50]. The free energy, enthalpy and entropy of hydration of O2- may 
be evaluated using the thermodynamic cycle: 

H~O(g) 
3 ,1, 

H~O(w) 

4 
--> O;(g) 

,[, 1 

--> o ; (w)  
2 

where g stands for gas phase and w for aqueous solution. According to the 
thermodynamic cycle procedure, one has [51]: 

a q  - a C ,  = AG, - a G ,  (6.15] 

where hGl, the Gibbs free energy of hydration of O~-, may be deduced from AG3, 
the free energy of hydration of H20, and AG2 and AG~ which correspond to 
unphysical "transmutation" processes resulting from transformation of H~O in 
O~ in aqueous solution and water, respectively. Whereas AG3 can be obtained 
from experiment, the difference AG~-  AG4 can be evaluated from the 
thermodynamic perturbation or integration procedure frequently used in MD 
simulations [52]. 

The theoretical basis of equation I6.15} may be understood by the fact that, 
the free energy being a thermodynamic state function, any closed path which 
changes the state of a system back to itself leads to a zero net change in free 
energy. This means that the free energy change AG, associated with the 
hydration process of O~- may be evaluated via path i itself, or by using any other 
path that has the same initial and final states, namely 4-3-2. Though some care 
has to be taken to obtain reliable estimates of free energy change using the 
thermodynamic cycle [1, 29, 37, 53], this procedure offers, in the case of the 
hydration of Od, an elegant alternative to the direct simulation of process 1, 
which is virtually impossible as it would involve the reversible removal of 
many water molecules from their hydration shells around the substrate. It was 
suggested first by Tembe and McCammon in 1984 [541, and then successfully 
applied to many important systems where the calculation of the free energy of 
ligand binding or the free energy of solvation was essential [53]. 

Turning back to the free energies of solvation of O~- as calculated by Shen et 
a]. from simulations using the thermodynamic cycle procedure, they range 
from-87.6 to -90 .8  kcal/mol, depending upon the computation parameters 
used, which compares very well with the experimental values lying in the -78 
to -86 kcal/mol interval [50]. Finally, examination of the radial diStribution 
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functions shows that the average number of water molecules in the first 
hydration shell of 02- is 7.7. 

In addition to the simulation of liquids and small systems in solution, MD 
calculations offer a sound basis for the description of structural and vibrational 
properties of solids such as zeolites [55]. These materials constitute a well- 
defined class of crystalline naturally occurring aluminosilicates, with three- 
dimensional structures arising from a framework of SiOfl- and A10~ s- 
coordination tetrahedra linked by their corners [56]. Their unique feature lies 
in their open structure, which exhibits channels and cages which are 
responsible for their shape-selectivity (at the molecular level)properties [57]. 
For example, the theta-1 zeolite is known to be a uni-dimensional medium 
pore (with a radius of 5.5/~) aluminosilicate with 10 T-rings (T = Si or A1)[57] 
(Figure 6.12). 

The channels and cavities present in zeolites can accommodate cations, 
water molecules or any reactant that fits within the available space. For 
example, the activity of the hydrogen forms of zeolites in acid-catalyzed 

Figure 6.12 Channel axis projection of the theta-1 zeolite with a benzene molecule in 
the centre of the cage (from Catlow et  al. with permission [59]). 
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reactions originates from the presence of protons balancing the additional 
negative charge of the A10, s- tetrahedra [58]. It has recently been found that 
MD simulations, in addition to being able to adequately describe the 
framework motions of such materials [55], are ideally suited to investigate 
proton transfer and diffusion mechanisms, which are at the origin of their 
shape-selective catalytic properties [59]. In the latter work, the authors have 
investigated the behaviour of sorbed CH4 and C~H4 in the ZSM-5 zeolite by 
incorporating both framework and sorbed species motions. The potential used 
has a quite elaborate form, and it has been obtained from a fitting to 
experimental data. The simulations have been performed using a box 
containing 576 framework atoms in addition to the sorbed species. 
Examination of the trajectories generated over time intervals of 30-120 ps 
shows that sorbed species may be trapped in a particular site for rather long 
periods of time (typically 5 ps), which was expected in view of the regular array 
of cavities and channels present in the ZSM-5 zeolite [Figure 6.13). 

In addition to the trajectories of sorbed species, these calculations have led 
tO diffusion coefficients for methane and ethylene in the ZSM-5 structure, 
which are in good agreement with experimental values [59]. Similar MD 
investigations have been reported on the self-diffusion of water [60] and 
benzene [61] in various types of zeolites. 

Another very useful application of MD simulations has emerged in the last 
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few years, namely the determination of 3D molecular geometries on the basis 
of X-ray or neutron diffraction or 2D-NMR data [1,62-64]. The principle of this 
procedure is to determine a 3D structure for the system investigated, generally 
a protein or a nucleic acid, which (i) satisfies experimental data such as 
distance geometry or torsion angle constraints in the case of NMR, or a set of 
observed structure factor amplitudes in the case of diffraction results, and (ii) 
minimizes the potential energy function U as given by equation (6.3). In other 
words, one uses an effective potential U,o,(r ~) to run the MD global 
minimization search, such that: 

U,ot (rN) = U(rN)+ U~- (rN) (6.16) 

where U(r ~) is the potential energy function of the system (equation (6.3)) and 
U,,,(r ~) is an adequate penalty or constraint potential function, the value of 
which increases the more an actual structure violates the experimental data. 
For example, the nuclear Overhauser effect (NOE) distance information 
deduced from 2D-NMR experiments may be incorporated into the MD 
simulation as stated by equation (6.16) by introducing a U~.,(r N) term of the 
form: 

u ' (6.17) 

where the summation runs over all NOE constraints of the system,/(,oF, being 
a pseudo force constant chosen to make NOE forces equivalent to those of 
U(rN), d, is the actual distance between the ith pair of protons, and d,NoE is their 
distance as deduced from the NOE experiment. 

Similarly, the penalty function introduced to perform a MD simulation 
leading to refine diffraction data is of the form: 

U tr(r N) - K ~  ~ [ F a  ~ ( h k ] ) -  Fo~ ' (hkl)] 2 
hltl 

(6.18) 

where hkl  are the reciprocal lattice points of the crystal, K~f is again a constant 
chosen so as to balance the two terms in equation (6.16), and F~o (hkl) and Fob, 
(hkl) are the calculated and observed structure factor amplitudes, respectively. 

During the process of refinement, ME) trajectories are generally calculated at 
elevated temperatures to accelerate conformational sampling. Periodically, the 
system is cooled down using the simulated annealing procedure [35] to remove 
kinetic energy and to permit the trajectories to settle into local minimum 
energy conformations [7]. The technique of MD simulation with experimental 
constraints is very powerful, and it has proved to be an indispensable 
complement of both 2D-NMR and X-ray diffraction experiments performed on 
macromolecules. As such, it has been applied both to determine solution 
structures of many proteins, such as the complete folding of crambin, and to 
refine X-ray structures of macromolecules, such as the enzyme aspartate 
aminotransferase [64]. 

Turning finally to conventional MD simulations of proteins, which is 
nowadays a very popular tool in biomolecular sciences, we note that the 
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t remendous progresses in computer  hardware and software have made it 
possible to investigate the structure of globular proteins in vacuo, in solution 
and in hydrated crystals [7, 65, 66]. The latter calculations are particularly 
worth mentioning, as it is now a well established fact that solvent 
environment  has a profound influence on protein structure and dynamics. 
Using the procedure of the thermodynamic  cycle, the effect of side chain 
muta t ion  can be simulated with a reasonable degree of reliability. Finally, 
promising modelings of the active sites of proteins may be achieved, which 
allows biochemists to investigate the process of ligand binding. It is probably 
not an overstatement  to predict that  MD simulations of macromolecules  will 
become on indispensable partner of experiment in a broad range of applications 
such as drug design, protein engineering and molecular  recognition. 
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As previously stated, the three-dimensional geometry is an important property 
for understanding or predicting the behaviour of molecular systems. It is the 
necessary starting point for the derivation of structural features (surface, 
volume, etc.), the estimation of steric requirements or the calculation of 
electronic properties. Geometry also plays a key role in the study of shape 
complementarity involved in host-guest interaction processes. In many drug 
design applications, the "active analogue" approach largely uses comparisons 
of molecular skeletons (possibly supplemented by consideration of more 
refined electronic or structural indices) to deduce possible pharmacophores (a 
particular spatial arrangement of atoms common to all active molecules, 
which is recognized by a single receptor). Therefore, this pharmacophore 
search directs or helps the synthesis of new drugs. 
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Apart from direct experimental determinations (X-ray crystallography, for 
instance), molecular geometry can be attained by database retrieval either 
directly for structures already stored in the database or by assembling relevant 
substructures (see Chapter 4). On the other hand, in Chapter 5, we emphasized 
the capabilities of computational approaches to derive possible molecular 
geometries. Methods such as molecular mechanics are of prime interest to 
complement X-ray data, and constitute a privileged avenue to geometrical 
determinations not (or not easily) available from experimentation: 
hypothetical structures not yet synthesized, low-energy conformers differing 
from those existing in the crystal state, and so on. 

In fact, these energetics aspects are often complex, relying on the "multiple 
minimum" problem. First, for systems with numerous degrees of freedom, the 
hypersurface of potential energy (in the space of the parameters defining the 
system) may have a substantial number of local minima, and determining 
the global minimum is not always an easy task. Furthermore, finding that 
minimum energy conformation may be not sufficient. In flexible molecules, 
several conformations may be significantly populated in given conditions and 
the observed physicochemical properties correspond to an average over this 
conformational mixture. The receptor-bound conformation of a drug or the 
geometry of a complexed species may be different from that of the free 
molecule if specific stabilization processes (H-bonds, etc.) appear in the bound 
(or complexed)state. It is therefore essential for such analysis to sample the 
conformational space up to several kcal/mol above the global energy 
minimum. 

For example, various spectroscopic data demonstrate that in the gas phase 
1,3 dichloropropane exists as a mixture of two (or more) conformers: gauche- 
gauche (GG) and anti-gauche (AG), the former being the most stable [1 ] (Figure 
7.1). As another example, we pointed out in Chapter 5 that 18-crown-6 
complexed with K" ions adopts a D~d conformation whereas the complex with 
Na" retains the C, symmetry found for the free crown. 

Computational conformation analysis comes up against two main problems: 

Exploration of the cortformational space, if exhaustive, may become a 
formidable task. Indeed, we saw that conventional minimization programs 
run only downhill from the initial geometry proposed without going 
through potential barriers. Some caution is necessary not to stop on a local 
minimum or keep hanging on singular points of the potential energy 
surface. In simpler cases, conformational analysis may be carried out by 

GG AG AA 
Figure 7.1 Conformers of 1,3 dichloropropane (from Holder et  al. with permission [1]). 
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varying only one or two geometrical parameters {usually dihedral angles), 
leading to usual conformational maps or interconversion profiles (such as 
those presented in Chapter 5). Such systematic search methods (or so- 
called grid search methods to remember the stepwise variations of 
independent geometrical parameters) look appealing, since they lead to an 
exhaustive generation of possible conformers. However, for systems with 
numerous degrees of freedom, a systematic study, to be sure that any 
interesting conformation has not been forgotten, would rapidly become a 
formidable and quite unrealistic task. For instance, assuming steps of 20 ~ 
examination of a system with six degrees of freedom would require us to 
consider 34 million conformations. Similarly, Lipton and Still noted that 
for a simple protein composed of 50 amino acids, analysis of the peptide 
backbone, with 120 ~ torsional angle resolution, would keep a 
supercomputer, able to energy minimize one structure per second, fully 
occupied for more than 104o years [2]. So, appropriate filtering methods 
have to be developed to eliminate unreasonable portions of the 
conformational space before more refined investigations are carried out. 
Steric interactions and ring closure conditions are among the most 
frequently used criteria. 

2. Geometry determination or optimization (either by quantum or molecular 
mechanics methods} requires heavy numerical calculations and suffers 
some drawbacks: 

�9 an initial starting geometry is required, 
�9 empirical force field methods, interesting for large systems in view of 

their speed, fall down for interactions {torsional, angle bending) not 
previously parameterized. 

In contrast to these approaches requiring heavy computational or 
experimental efforts, chemist in many cases can "manually" build very 
realistic models in assembling in the proper order predefined elementary units 
and using the general rules of conformational analysis. For instance, it is likely 
that a cyclohexyl ring will adopt a chair conformation (in the absence of other 
constraints), an alkyl chain prefers an extended arrangement, and so on. In 
such processes, the experts' knowledge, from various modelling sets, gives 
fairly correct and reasonably fast predictions. The interest of such 
developments is still enhanced in view of the increasing demand in drug 
design applications. Indeed, in this field the chemist frequently has to draw 
numerous 3D structures to get some insight about active molecules and 
propose new drugs. So, not surprisingly, there is increased interest in non- 
numerical model builders that quickly give realistic 3D geometries. 

Relevant also in determination of possible molecular geometries, the 
"distance geometry" approach works primarily on interatomic distances and 
allows for the treatment of NOE enhancements in NMR {interesting 
experimental information, since it comes from solutions and not crystal-phase 
samples). 

We will first briefly present this approach, since it also provides possible 
solutions to the more general problem of exploring the conformational space. 



2OO EXPLORING THE CONFORMATIONAL SPACE: DISTANCE GEOMETRY AND MODEL BUILDERS 

7.1 DISTANCE GEOMETRY 

As stated by Crippen [3, 4] "Distance geometry refers to the study of geometric 
problems with an emphasis on distance between points". 

The method utilizes a matrix of all pairwise atomic distances in a molecule 
to generate a set of Cartesian coordinates consistent with this distance matrix. 
Distances come from experiments (NOE measurements) or are derived from 
standard geometrical features. 

The first aim of distance geometry seems to have been the search for a 
"robust" treatment of conformational calculations. It was then oriented 
towards a new approach of binding in drug design. The largely widespread use 
of NOE and 2D NMR to derive geometrical features of proteins will probably 
prompt various and numerous applications of distance geometry. Indeed, this 
approach relies on the concept of upper and lower distance bounds, so it seems 
particularly well-suited to the treatment of NOE factors, since these 
measurements generally give distance ranges rather than well-defined values. 

The method is applicable to conformational search on small or medium size 
molecules [5, 6], but also appears very efficient to determine conformations of 
macromolecules in solution [7, 8] (EMBED algorithm [9], DIS-GEO program 
[ 10], DISMAN program [ 11 ]}. An il luminating example in that field comes from 
a recent study of a 74-residue polypeptide (a-amylase inhibitor Hoe-467A) 
where distance geometry, starting with 401 NOE distance constraints, gives 
results quite consistent with an independent X-ray study [12, 13] as to the 
proposed backbone conformations. 

In usual conformational investigations, a molecular system is defined by 
some geometrical variables: Cartesian or internal coordinates. Although a 
system of n atoms possesses 3n-6 degrees of freedom, a current trend is to 
reduce the number of these variables (for instance, focusing interest on 
dihedral angles, and assuming standard values for bond lengths and valency 
angles). However, even with such a reduced set of coordinates, the treatment 
may suffer some instabilities. Small individual errors on successive dihedral 
angles may result in sizeable overall deviations for the end atoms. A slight 
angular variation can substantially modify the position of a remote atom via a 
"lever arm" effect. Clearly, working on pairwise distances between all couples 
of atoms leads to a more "robust" approach, i.e. a t reatment which can 
accommodate some uncertainties and avoid propagation of errors. However, 
for n atoms there are now n(n-1 )/2 distances and a large amount  of redundancy 
is then introduced. Efficient algorithms are therefore mandatory to treat these 
numerous data. 

7.1.1 Embedding 

The general problem that distance geometry addresses is "embedding": 
starting from a matrix of all pairwise atomic distances, given a list of 
geometrical constraints, it consists of finding one or more sets of atomic 
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coordinates for a molecule. These constraints can come from experiment  
(upper distances can be assigned to pairs of correlated protons in NMR 
experiments). The reasonable assumptions of nearly standard values for bond 
lengths or valency angles (at least for non heavily strained molecules), 
chirality, coplanarity of phenyl rings, etc. also impose numerous  a pr ior i  
constraints, so-called "holonomic constraints".  The criterion that  distances 
between non-bonded atoms cannot be less than the sum of the van der Waals 
radii defines a third type of constraint. 

How can a tom locations and coordinates be assessed starting from a set of 
interatomic distances? Remaining in a 2D space for the sake of simplicity, let 
us recall that  a triangle is perfectly defined by its three edge lengths (Figure 
7. 1. 

J K 

Figure 7.2 In the 2D space, the three distances d,,, d,k, d,k fix the relative location of 
points i, j, k (if chirality is not considered). 

So, starting from two reference points (three in a 3D space), one can 
successively locate the various atoms, one after the other, provided 
interatomic distances (and chirality in the 3D space) are known. However, 
some experimental  uncertainties may occur, and there is no reason to privilege 
certain atoms with respect to the others. Furthermore,  a construct ion taking 
into account s imultaneously all the interatomic distances is likely to give an 
approach more able to cope with experimental  errors and detect 
inconsistencies. In fact, any distance set does not always give an acceptable 
solution. Remaining in the 2D space, the triangle inequali ty tells us that  for 
three points, any distance mus t  lie between the sum and the difference of the 
other two. 

Given three atoms (i, j, k), for any pair (i, j): 

djk - dlk [ _< d, _< djk + d~ 

Indeed, the Crippen algorithm is largely based upon that triangle inequality. 
A similar condition also exists for four points in the 3D space (i.e. given three 
non-colinear points and a fourth one, its distances to others mus t  lie between 
the "planar cis or trans arrangements")(Figure 7.3}. However, this condition 
seems more difficult to program, and the triangle inequali ty remains the most  
frequently used criterion. 

The Crippen method lies on a distance matr ix (n ,n) ,  n being the number  of 
atoms in the molecule. For actual distances, this matr ix  would be 
symmetrical ,  with diagonal elements  equal to zero. Owing to experimental  
uncertainties and constraints, this distance matr ix is here presented as being 
consti tuted of two parts. The upper triangle collects upper (maximal) bounds 
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/ ,  .......... 

Figure 7.3 

" | . .  \ 
� 9  

Upper and lower bounds for distance d,,. 

of the interatomic distances. In the lower triangle are indicated lower bounds 
for every distance. If some estimates are missing one can use a large number 
for upper bounds and zero or the sum of the van der Waals radii for the lower 
bounds (the Crippen distance matrix is shown below): 

0 upper bounds 
0 

0 
0 

0 
0 

0 
0 lower bounds 

The following steps are then performed: 

(a) Using the triangle inequality, distance bounds are smoothed {lowering 
some upper values and raising some lower valuesJ. 

(b} For each distance, independent random values are chosen within the 
allowed range between upper and lower limits. 

(c) This trial set of distances is converted to a "metric matrix" G, with centre 
of mass as the origin. G is a matrix of vector dot products, the elements of 
which being defined as: 

g~l  ---- H i �9 I I t  

where u~ is the vector from the origin to atom i. These u, are not known 
when the calculation is in progress, but the g, can be easily evaluated from 
the interpoint distance matrix wi thout  reference to coordinates. 

2s .  = (4o) + (4o)" -(4,1 

with: 

Z Z 
l=l i= 9̀  k =l 

(n - number  of atoms} 
The problem will now be to project these data into the 3D space and 

define coordinates such that the trial distances are reproduced as closely as 
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possible. Such a reduction to the 3D space is carried out by searching for 
the first three principal axes of the initial data set, that is the eigenvectors 
corresponding to the three eigenvalues of the largest absolute magnitude. 

(d) From this new three dimensional metric matrix, trial coordinates v,~ (for 
atom r, m - 1 to 3) are calculated. They are a good approximate solution, 
but there is no guarantee that they completely satisfy all the original 
constraints. They therefore have to be refined by minimizing an e r r o r  

function based on penalty terms for each violation of the constraints: 

m = 1 to 3; w,m = element of a three column matrix corresponding to the 
eigenvectors associated to the three largest eigenvalues (Kin) of the original 
metric matrix. 

This process leads to a randomly chosen conformation which more or 
less satisfies all the input constraints. 

(e) go back to step (b)to generate another acceptable conformation. 

Remark 

Distances are not sensitive to mirror inversion about one chiral centre, so 
enantiomers cannot be distinguished by distance geometry. In principle, 
diastereoisomers would be distinguishable, but owing to the rather large 
tolerance on most distances, the problem is rather intricate. It is easier to 
introduce a "chirality violation" penalty term. 

Given four points representing atoms surrounding an asymmetric carbon, 
chirality on this centre can be defined by the signed volume of the tetrahedron 
formed by the four points: 

f = ( v ,  - v 4 ) .  - v 4 )  x - v 4 ) ]  

the Vi vector defining the position of point i. If the numbering 1...4 obeys an 
ascending order according to the Cahn, Ingold, Prelog system: 

f > 0 for an S configuration, 
f < 0 for an R configuration. 

7.1.2 Applications to geometrical or conformational problems 

As previously indicated, distance geometry was successfully applied to 
propose reasonable conformations for either small molecules suffering strong 
geometrical constraints [5, 6] or large biomolecules [7, 10]. Embedding seems 
particularly useful for determining the conformation of small proteins and 
oligonucleic acids in solution thanks to NOE information. As an illuminating 
example, one can note the proposed spatial structure of protein basic 
pancreatic trypsin inhibitor. Using 508 proton-proton contacts shorter than 
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4/It (extracted from a simulated ideal NOESY experiment}, distance geometry 
reproduces crystal structure within 1.3 A r m s  coordinate difference for the 
backbone atoms [10]. See also [14]. 

Crippen et al. [14, 14a] recently proposed an extension of the method for 
molecules where bond lengths and valence angles can be assumed as fixed. 
These holonomic constraints are enforced separately from experimental 
constraints by being introduced into the formulation of the problem. If bond 
lengths and angles are assumed fixed, the various degrees of freedom can be 
expressed by dihedral angle values only. They are therefore easily discussed in 
terms of spatial orientation of unit vectors defining the position of the bonds 
in local reference systems. The method is based on a l inearized representation 
of the molecule as a tree graph {nodes = atoms and edges = bondsl. Starting from 
a root atom, the position of every atom is defined thanks to local coordinate 
systems recursively set up after crossing each rotatable bond. Among the 
advantages of the method are a sizable decrease of the number of variables for 
molecules having rigid groups and a more accurate access to local geometries 
for rigid groups {phenyl chiral centres, etc.I [Figure 7.4). 

Distance geometry was also used as part of the model builder proposed by 
Wegner and Smith [15] (see p. 222). In the "ensemble approach" of Sheridan et 
al. [161, the distance geometry method of Crippen has been modified to 
simultaneously treat two or several molecules as a single "ensemble". This 
extension can generate coordinates for the set of molecules in their "active 
conformation" {with their essential groups superimposed} in one step, and 
therefore gives a way in which to find a common pharmacophore. 

Another important application of Crippen distance geometry is receptor 
modelling, particularly regarding the binding of small ligand molecules to sites 
of proteins or macromolecules. This point will be developed further in Chapter 
12, devoted to molecular recognition. 

As a concluding remark it may be noted that representing molecular 
structure as a set of distances sometimes offers definite advantages for features 
more easily expressed in terms of local distances than in dihedral angles or 
coordinates {ring puckering is an illuminating example). By contrast, one can 
easily specify, via dihedral angle constraints, a cis or trans arrangement: this is 
more difficult with distance bounds. Another advantage is that distance 

2 

lo H2 H V 
i , / \ / L _  i 

i 
~ '  N5 P -  ' ~  C4 

H13 06  5 

Figure 7.4 Linearized representation. Propagation of local coordinate systems (light 
arrows). Heavy arrows (along bonds} indicate the traversal through the graph from the 
origin C1. At C1, axis 1 is parallel to bond C1-C4, axis 2 is located at the plane 
C4-C l-H3 perpendicular to axis 1. Two axes are sufficient at C4, assuming coplanarity 
of the peptide fragment (from Crippen with permission [14a]). 
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geometry does not depend upon the number of rotatable bonds, a point which 
seriously hampers systematic conformational search for complex systems, as 
will be shown below. 

When sampling the conformational space and choosing distances obeying 
the triangle inequality, it may be that distances are selected in a somewhat 
correlated manner leading to a biased sampling. Using, for example, torsion- 
angle sampling in place of 1,4 atomic distances and removing distance 
correlation enlarge the searchable conformational space and increase 
efficiency in the generation of possible conformers [17]. 

However, although distance geometry is an attractive and efficient way in 
which to convert distances into coordinates, it corresponds to a random 
exploration of the conformational space, within the constraints of the distance 
bounds but without any energy consideration. Proposed solutions therefore 
have to be more closely examined as to their stability. Furthermore, 
geometries deduced from random selection of distances within allowed ranges 
usually correspond to non-perfectly relaxed conformations. These therefore 
have to be optimized in a subsequent step by methods such as molecular 
mechanics or dynamics performing a local exploration of the conformational 
space around the solutions generated. Constrained molecular dynamics is 
frequently used for this purpose. It starts with some initial conformation 
(determined by distance geometry) suffering only minor constraint violations. 
Then molecular dynamics simulation is carried out, using as potential 
function a weighted sum of the usual empirical energy function plus the 
penalty function. Thermal motions send the molecule over small energy 
barriers towards a conformation that better satisfies the geometrical 
constraints and has a relatively good internal energy [7]. 

In addition, owing to the Monte Carlo nature of the sampling, one is never 
sure not to have missed any interesting solution. 

7.1.3 Relaxing dimensionality and energy embedding 

Distance geometry provides solutions consistent with geometrical constraints 
but does not consider energetic factors. To take them into account, when 
solving the multiple minimum problem, variants of the distance geometry 
approach were presented by Crippen with "energy embedding", whereas 
Scheraga et  al. proposed an approach "relaxing dimensionality" [18-20a]. 
Basically, the latter method starts with a very low energy "conformation" 
located in a high-dimensional space where there are fewer local minima. Then 
it gradually contracts the dimensionality, perturbing energy as little as 
possible, so as to reach a low-energy structure in the usual three-dimensional 
space. 

In a high-dimensional space (typically n-1 for n constraints on atoms), one 
can easily find a lower bound of the molecular energy, minimizing separately 
all the independent contributing terms (Lennard-Jones, hydrogen-bonding, 
torsion), the sum of which represents the molecular energy. Of course, the 
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interatomic distances so obtained do not correspond to any realizable 3D 
structure. The game is therefore to restrict the dimensionality of the 
representation space down to a feasible 3D structure. 

The method has been presented as approaching the global energy min imum 
"from below" (since energy increases as more distances are constrained), rather 
than "from above", as in usual minimizat ion schemes, so that the likelihood 
of ending up with the good solution is increased. 

As compared to neighbour distance geometry approaches, where the 
problem is also formulated in the distance space, it can be noted that in the 
Scheraga method, distances are used as the primary variables, without the 
need to come back to Cartesian coordinates in the minimizat ion step. Results 
on model systems and the pentapeptide met-enkephalin look quite attractive, 
although the method requires rather high computer storage capabilities. 

As to distance geometry with energy embedding, Crippen indicated that the 
reduction of dimensionality from an hyperspace R ~-' (for an n atom system) to 
the current IR a space can be efficiently carried out as a constrained- 
optimization problem and solved by augmented Lagrangians [20b]. 

7.2 EXPLORING THE CONFORMATIONAL SPACE 

Even assuming that bond lengths and valence angles are maintained at 
standard values, variations of dihedral angles induce a tremendously large 
number of internal degrees of freedom, even for medium-size molecules. 
Basically, for N dihedral angles and M possible values for each (for instance 
steps of ca. 30~ there are M ~ conformations to be investigated to be sure not 
to overlook any valid structure (in fact, the actual number of structures will be 
less, if one discards high-energy conformers and takes into account ring 
closure conditions)[2]. 

Another problem is that the various energy minimization processes do not 
go through potential energy barriers. In other words, they only move downhill 
from the trial starting structure towards the nearest minimum,  which may 
unfortunately be only a local minimum.  Furthermore, one is generally 
interested not only in the best conformer but rather in the several best 
conformers of low energy (particularly, in a pharmacophore search, for 
selecting one common geometrical arrangement within the set of best 
conformers for different active molecules}. 

To overcome these difficulties, various approaches have been proposed to 
explore more efficiently (but safely)the conformational space. The common 
approach is to generate a set of possible trial conformations which are 
subsequently submitted to molecular mechanics energy minimization refining 
their geometry to nearby min imum energy conformers. Collecting the 
resulting conformers and discarding duplicates yields the required set of low- 
energy conformers. 

Special attention was devoted to cycles since conformational searching in 
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such systems is generally more intricate than for open chain compounds. It is 
not always easy to discriminate between the various conformers and to 
determine how many independent torsion angles must be varied to go from 
one conformer to another one. Furthermore, as stated by Gajewski et al. [21], 
it seems a difficult task to monitor by algorithms dihedral angle changes in 
cyclic structures. Particularly, great caution must be exercised with the usual 
bond-rotation algorithm, used for acyclic systems, which rotates all the atoms 
related to one extremity of the rotatable bond. A convenient solution, as 
proposed by Lipton and Still [2] and Chang et  al. [22], is to temporarily open the 
ring and create a pseudoacyclic molecule which is processed as an acyclic 
structure but with additional constraints enforcing ring closure for the final 
structure selection. These ring closure constraints concern the distance 
between the two atoms forming the ring closure bond, the two adjacent bond 
angles and the three corresponding dihedral angles (Figure 7.5). A chirality test 
is also provided. 

Figure 7.5 Closure parameters (Lipton and Still [2]). 

7.2.1 Subunit optimizations 

To limit the computational task, Scheraga et al. [23, 24] proposed a 
combination approach. Preliminary calculations are made on smaller 
subunits, then these subunits are combined to yield low-energy candidates for 
the whole structure. So, constraints i n t e r n a l  to fragments are already solved, 
and in the final stage one has only to cope with interactions b e t w e e n  
fragments near their boundaries or with some long range interactions. Note 
that the same idea underlies the expert system AIMB (Analogy in Model 
Building; see below). 

The approach was extensively used for energy-based structure prediction of 
proteins, by assembling peptide units. This point is presented in Chapter 13 
(see section 13.4.2). Let us here only focus attention on some useful tricks: 

�9 Use of nondegenerate minima, to limit the exponentially growing number 
of minima to be retained at each step of the building process. They are 
structures corresponding to the same backbone conformation but differing 
in side chain orientations. 

�9 Modification of the force field, so that the energy function remains finite 
even in case of atomic overlap. Otherwise, for the very high energies 
resulting from such an overlap, minimization is computationally infeasible, 
although a small change could suffice to remove such singularities. 
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Choice of a correct cut-off energy, since solvent stabilization may favour 
some conformers. This is empirically evaluated with incremental terms 
according to hydrogen-bonds with the surrounding medium. 

7.2.2 Tree search methods 

The algorithm proposed by Lipton and Still [2] offers a number of advantages: 
it works on internal coordinates and allows for sampling over all accessible 
regions of the conformational space using a tree search method. The approach 
begins with a geometry-optimized structure, and then performs stepwise 
torsional rotations about all rotatable bonds, retaining only conformations 
passing geometrical tests designed to reject high-energy structures. 

Ignoring bond lengths and angle variations, the search is restricted to the 
torsional conformational space {dimension ca. N-3). The process can be 
viewed as a systematic grid search in a hyperspace where axes {associated with 
the various torsional angles} are divided into segments according to the 
variation range of the torsional angles for each step. 

The search is performed in a sequential unidirectional fashion, starting at 
one end of the structure and travelling along the framework (for cyclic 
systems, rings are temporarily opened, then additional constraints will be 
placed to ensure ring closure}. Ordered variations of torsional angles allow for 
representing the conformer generation process as a tree structure. On the 
associated graph, the leaves correspond to each of the possible conformations 
and each edge stands for a torsional rotation. At each node of the graph 
certain atoms become fixed, since they cannot move in the following 
rotations down in the tree. Tests for interatomic contacts applied to these 
newly fixed atoms allow for eliminating non-acceptable structures and 
pruning entire branches of the generation tree in a single operation. Contacts 
are looked for 1,5 interactions and more remote ones with cutoff distances of 
ca. 1.5~ between atoms (2A for united atom structures where small 
adjustments of length, valence or dihedral angles may relieve strain). For 
cyclic molecules additional ring closure constraints are considered 

The authors suggest that for medium size organic molecules, a 60 ~ 
dihedral angle resolution seems convenient [smaller steps providing no new 
conformers}. Tests on alkanes and cycloalkanes not only retrieve all known 
energy minima, but also propose new solutions. The algorithm is presented 
as optimized for both speed and memory requirement, so that global 
conformational searches for molecules up to 109 conformational possibilities 
in cyclic systems [106 in acyclics) are claimed feasible with reasonable CPU 
cost. However, it was quoted that the excision of branches of the tree 
depends upon the user's ability. Furthermore, rejection of branches before 
energy minimization may eliminate, on the basis of distances, structures 
that would appear acceptable after geometry optimization is carried out [25] 
(Figure 7.6). 
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Figure 7.6 If, after examining ~,, the current rotation is that modifying ~2, atoms 1-3 
and 6-10 are fixed. In the following rotation, O3 will be modified: atoms 2-4 and 11-12 
will remain unmoved, the others moving. So, in the current step only atoms 4, 11 and 
12 need to be calculated (Lipton and Still [2]). 

7.2.3 Stochastic approach 

The stochastic approach (Monte Carlo method) is well suited for large 
molecules with complex interconversion pathways. As previously indicated, 
the common drawback of energy minimizat ion algorithms is that these 
methods always work downhill and do not cross energy barriers. To be sure not 
to miss any possible conformers, one has to try numerous starting geometries. 
Monte Carlo methods, until now mainly used for liquid simulations, have 
been extended to tackle these conformational problems. 

Typically, in the simplest stochastic search, from a given starting structure, 
random variations on selected coordinates (randomly updated) are drawn, and 
the internal energy of the resulting structure is calculated and energy- 
optimized. This new conformer is saved if its energy is lower than a preset 
value (for example, the energy of the previous minima saved) or, better, if the 
difference between its energy and the best one previously found is less than a 
fixed threshold: 

E < E mm o r  E -  Emi n < AF. 

(and if this conformer has not been already found). Then the cycle is repeated. 
This is the principle of the Monte Carlo Multiple Min imum (MCMM) 

method of Chang et aI., where "a single starting geometry is used repeatedly to 
accumulate its progeny" [22]. Alternatively, in the stochastic minimizer, one 
starts with the last generated conformer and randomly modifies its geometry. 
The same criteria as above are used to save or discard the new structure 
generated. This process corresponds to a "random walk along the potential 
energy surface in a continual loop" [25], updating the starting structure for 
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minimization whenever a new extremum is reached in order to find all 
minimum energy conformations. As there is now some relation between the 
conformers successively created, the search is better. 

In alternative versions, the previously saved structures are used the same 
number of times, or that structure which has been used the least is chosen [22] 
as the current starting point for updating. As stated by Saunders, "in such 
methods, one is not randomly exploring the conformational hyperspace, but is 
stepping, by random kicks followed by minimization from one local minimum 
to another one." Such random kicks are feasible both on Cartesian or internal 
coordinates [27, 28]. The number of parameters (or coordinates) to be varied at 
each Monte Carlo step to attain more efficiency is discussed by Chang et  al. 
[22]. 

A random walk means that multiple runs are necessary to develop the 
confidence that the global minimum is found. $o, when can the 
conformational mapping be stopped? The search is automatically terminated 
after a user-defined number of unsuccessful attempts (completed search steps 
in which no new acceptable structure, within a predetermined range, is located 
[25, 26]. This termination number is currently set at about a few hundred [27]. 

Conformational search may be directed towards the low-energy regions of 
the conformational space by using multiple low-energy conformers as initial 
structures and modifying only a fraction of the variable torsion angles. 
However, random search efficiency degrades rapidly as more conformers have 
been previously found. As a variant of MCMM, the SUMM (Systematic 
Unbounded Multiple Minimum search) approach of Goodman and Still 
proposes a new internal coordinate traversal of the r space [29]. 
Generation of conformers begins at low resolution (120 ~ in torsion-angle space) 
sampling the whole r space, so that torsionally remote 
conformers are created early on in the search. Then, resolution is doubled and 
new points are sampled. This continuous process where the extent of the 
search need not be specified at the outset (in contrast with systematic 
searching where the number of steps must be fixed in advance), appears more 
efficient at finding all low-energy conformers for medium and large ring 
molecules. 

In the RIPS (Random Incremental Pulse Search) method [28], starting with 
an input geometry, random changes (+ 1A)are performed on the coordinates of 
each atom (or a specified subset of atoms) and the perturbed geometry is then 
submitted to the usual (downhill)minimizers to find a new conformer. The 
process is then repeated again from that conformer to find another low-energy 
structure. To decide whether two conformations may (or may not) be 
considered as identical, two criteria are proposed: examining the 
conformational energy (which must be the same within a tolerance range of ca. 
0.01 kcal/mol), or the values of the dihedral angles. Since full molecular 
mechanics minimizations would be time consuming, an initial screening 
rejects conformers lying too high in energy. A similar crude filtering test 
(examining severe non-bonded contacts or bad ring closure conditions) is also 
incorporated in the MCMM algorithm of Chang et  al. [22]. 

To avoid hanging on a saddle point or to specify the minimum in a flat area 
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of the potential energy surface, a refinement step introduces small random 
distortions (ca. 0.05 A), that cause the collapse of transition state geometries 
and lead to true local minima [28]. 

A recent application derived from Monte Carlo/energy minimization 
techniques [22] concerns investigation of the conformational space of 
inhibitors bound to the active site of an enzyme (thermolysin, a bacterial 
enzyme, in the example treated)[30]. Accurate prediction of the bound 
conformers of enzyme inhibitors is a challenging problem for the modelling of 
new enzyme inhibitors, including prediction of their binding activity in 
advance of testing. Starting from a refined crystal structure, the inhibitor was 
removed and docked in random trial conformations that are energy minimized 
(solvation energies were estimated on the basis of the exposed solvent 
accessible surface area of the inhibitor). Several trials were analysed for 
exploring the low-energy domains of the potential energy hypersurface, and 
the process can be thereafter repeated to model the binding of other, 
structurally different, inhibitors. According to the authors, the methodology 
seems promising for the evaluation of potential new synthetic inhibitors in 
cases where the structures of the enzyme and a bound inhibitor are known. 

As for all stochastic methods, there is no definite criterion to assess that all 
the acceptable conformations are found. However, from various studies, 
mainly on cycloalkanes (a challenging problem, since several low-energy 
forms with complex interconversion pathways are expected)[2, 22, 25-28], it 
appears that all the known conformers are easily retrieved, and that new 
acceptable solutions can be found, for instance for cyclononane. Of course, in 
that case, the newly discovered low-energy s t ruc ture-  2.2 kcal/mol above the 
global m i n i m u m -  would not intervene for more than 0.5% of the 
conformational mixture at room temperature. This percentage is low, but 
cannot be excluded in a detailed conformational analysis. Furthermore, it may 
change for other parent compounds. 

The RIPS approach was recently used to scan the potential energy surfaces of 
C5-C8 cyclic alkanes to examine the consistency of molecular mechanics 
with semi-empirical or ab initio quantum methods. Good agreement is found 
for geometries, but relative energies derived from semi-empirical methods 
often deviated from those obtained by the other two methods [31 ]. 

It has also been said that Monte Carlo methods seem less effective when 
many covalent bonds are present (displacements "along" bonds, which 
correspond to larger energy changes, being disfavored vs. "perpendicular" ones, 
so that the generation of acceptable forms is somewhat biased)[7]. Scaling 
variables, so that the energy function is isotropic near its minimum, have been 
proposed to relieve this drawback (for dynamic aspects, see also Kawai et al. 
[331). 

Metropo l i s  m e t h o d  

The Metropolis approach is similar to the stochastic minimizer, but 
introduces some probabilistic criteria to accept the new conformer generated. 
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For escaping potential wells of local minima more easily, one sometimes now 
accepts changes that increase energy with the hope that this will allow for 
going through a pass towards the global minimum well. In other words, a 
stochastic search is now performed such that if the resulting energy change AE 
is negative, the new structure is always accepted. If the energy change AF. is 
positive, the structure is not automatically rejected, but it can be accepted, 
with a probability 

expi-AE / kbT ) 

where kt, is the Boltzmann constant. The parameter T plays a role similar to 
that of temperature in Boltzmann's law, and is therefore called "temperature" 
by analogy [34]. 

This acceptance test is performed by picking a random number (between 0 
and 1)and comparing it to exp-(AE/kBT): if this random number is lower, the 
change is accepted and yields a new geometry that can be used as a new 
starting point. 

Higher temperatures accept larger steps, and so allow for large motions 
exploring the gross features of the conformational landscape. This makes it 
possible to escape local potential wells. On the contrary, lower temperatures 
provide more stringent conformational selection, the system remaining 
confined in smaller regions. 

Various applications have dealt with the conformational search for 
polypeptides, in torsion angle space (with bond lengths and angles fixed). After 
a random change of one random torsion angle, the new structure is compared 
to the preceding one using the Metropolis criterion [32-33a]. Alternatively 
(and this seems to be a better solution), in the torsion-based method of Li and 
Scheraga to locate the global energy minimum [35], as in von Freyberg and 
Braun's study of met-enkephalin [36], the randomly generated conformation is 
first energy-minimized before the Metropolis acceptance test. 

Interestingly, these authors proposed to jump to higher temperatures to 
avoid getting trapped in a local minimum (a situation possibly encountered in 
a constant temperature scheme) and then come back to a lower temperature to 
more thoroughly explore the vicinity of low-energy conformations. This 
process relies somewhat on the simulated annealing methods that will be 
detailed below. 

For met-enkephalin (76 atoms), this approach found 1881 low energy 
solutions corresponding to 77 non-identical different conformations. Among 
them, 74 conformers, in an energy band of 2.5 kcal/mol, have backbones 
similar to that of the global minimum, with a gap of about 0.9 kcal/mol 
between this minimum and the next highest energy species. 

Anneal ing  

"Simulated annealing" [3 7] is widely used in optimization problems where one 
has to minimize an "objective (or cost)function" without being caught in a 
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local minima. It can be viewed as a derivative of the Metropolis method in 
which both the energy and the temperature dependence of the Boltzmann 
distribution guide the search for the global minimum [38, 39]. We present this 
approach here for conformational search, by minimization of the steric energy 
to find the best conformer. However, other applications also appear in the field 
of molecular modelling: simulated annealing was proposed for the automated 
docking of substrates to proteins [40] and for the recognition of a common 
substructure in two molecules [41, 41a]. 

In conformational search, annealing is primarily designed for finding the 
global minimum [39] and samples low-energy conformations more sharply, 
whereas systematic search, for example, which can in principle find all 
minima, uniformly samples the whole conformational space 

The name "simulated annealing" is derived by analogy with the process of 
crystallization: slowly cooling a melted sample produces the most stable 
(crystalline) arrangement, whereas a rapid freezing may lead to a metastable 
form (glass) corresponding to a local minimum. The main difference to the 
Metropolis method is that simulated annealing is monitored by a cooling 
schedule. The process is broken up into a number of cycles, each at a constant 
temperature and composed of a large number of individual steps corresponding 
to a stochastic search with a Metropolis criterion. Each cycle can be considered 
as reproducing the Boltzmann distribution of the conformational states (to be 
submitted to further minimization). Then the temperature is lowered and the 
process is iterated. By progressively lowering the temperature one explores 
conformations of decreasing cost in smaller and smaller regions of the 
conformational space, and finally the system falls into the global energy 
minimum. 

Simulated annealing was, for instance, applied by Wilson and Cui [38, 39] to 
polypeptides. A first example treats individual amino acid dipeptide models: a 
bond is randomly chosen. It is rotated by a random amount be tween-90 ~ and 
+90 ~ , and the energy is calculated to see if this solution can be accepted. 
Typically, 250 steps were performed for each of the 30 temperatures 
investigated, generating about 3500 structures per run. For dipeptide models 
for which the global energy minimum was already known, simulated 
annealing found the right solution. The method was then extended to 
polyalanine structures: 

N-Ac(Ala)n NHCH3, with n up to 80 

and the efficiency of the method thoroughly studied. As the cooling schedule 
is the original feature of annealing, an interesting point is the comparison of 
annealing with the common Metropolis algorithm at a constant temperature. 
Whereas annealing finds the global minimum, the fixed temperature 
Metropolis method does not always converge to it: at higher temperatures the 
molecule walks in the high energy regions too much, whereas at low 
temperatures it may remain trapped into a local minimum. According to the 
authors, a critical function of annealing would be to cool slowly over a phase 
transition. Another point of interest is that the random walk at each 
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temperature should be long enough to reach a "steady state" distribution in 
accordance with the Boltzmann law. It appears that the percentage of runs 
finding the global m i n i m u m  is determined not only by the number  of local 
minima, but also the complexity of the energy surface. For polyalanine with 
four rotors, 250 steps are sufficient to find the m i n i m u m  for 70% of the runs. 
The percentage falls to only 20% for 10 rotors, but in that case it increases to 
70% if 1000 steps are carried out at each temperature (assuming three local 
minima per bond, there are now 3.49 • 10 ~ minima). 

A recent study carried out on tetrahydroionone [39] points out that the rigid 
geometry approximation (a commonly  used optimization over only dihedral 
angles with constant bond lengths and angles) corresponds to a walk on a 
dihedral energy surface which may not be identical to the {real} total energy 
surface, so that the true m i n i m u m  may be missed. This drawback can be 
avoided if a subsequent local minimizat ion is performed on the solutions given 
by annealing in the rigid geometry approximation. 

7.2.4 Minimization under constraints 

In most of the previous examples, energy optimization was performed by 
common molecular mechanics or related methods, and additional constraints 
(severe non-bonded repulsions, ring closure conditions} were sometimes used 
to reject unreasonable structures. In some situations, experimental data 
(mainly from NMR with Overhauser enhancements  or coupling constants) can 
not only help to reduce the search size but also guide the energy minimizat ion 
process. As quoted by Scarsdale et  al. [42], "such constraints are in no sense 
real energies" but they can be incorporated as pseudo-energy terms in potential 
energy calculations. They introduce penalty contributions tending to 
destabilize conformations where the distance between two protons is different 
to that assumed from an NOE measurement  or a dihedral angle is not 
consistent with an observed coupling constant. As an example of application, 
we recall the prediction of the major solution conformation of tyrocidine A, a 
cyclic decapeptide, using 18 NOE measurements  of interproton distances [43]. 
An empirical penalty function was developed in which any conformation 
which deviates by more than 10% from a defined NOE distance is penalized by 
approximately 2 kcal/mol: 

Penal ty  E(NOE)k~/mo~ = K*(R-Ro)~/Ro 3 with K = 800; Ro = target distance 

D Phe 4 - Leu3 - O m 2  - Val 1 - Tyr 10 
- I A 

Pro 5 - Phe 6 --D- Phe7 - Asn8 - Gln9 . 

A c -  A l a -  Ala--D- A l a -  Pro - Ala--D- A l a -  NHMe B 

A c -  A l a -  A l a -  A l a -  A l a -  NHMe C 

The investigated decapeptide (A) is split into two open chain fragments (B and C)with 
common Ac and NHMe groups. For the sake of simplicity, amino acids are replaced by 
alanines {except for proline due to its cyclic character}. 
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A first step consists in splitting the molecule into two polyalanine-type 
fragments with common terminal groups. Then, conformers of individual 
amino acids were generated using molecular mechanics and six intra-residue 
NOE constraints to restrict the allowed areas of conformational space in 
Ramachandran (~, ~ )maps .  For the two open-fragment models, candidate 
structures were generated with every acceptable conformation of the backbone 
~, W angles (discarding conformers with overlapping a toms)and energy- 
minimized, taking into account an NOE penalty function. This leads 
respectively to 23 and 71 possible fragments, which were classified by factor 
analysis. From the groupings observed in the space of the major factor axes, 5 
and 4 representative conformers can be selected for the two halves of the 
backbone model. Merging these representative fragments, two possible target 
cyclic structures are then generated looking for the best superimposition of the 
terminal groups of the fragments and energy minimization with constraints. In 
the last step, side chains were added and the whole molecule minimized 
without constraints to give the final structure. According to the authors, this 
computer-built model is likely to represent the actual conformation in 
solution, since the proposed structure seems consistent with the hydrogen- 
bonding pattern and shows close agreement with the known conformation of 
identical sequences of residues in other peptides (Figure 7.7). 

A similar approach, incorporating NOE constraints in molecular mechanics, 
was also carried out by Scarsdale e t  al. [42] to determine the solution 
conformation of glycolipids. The authors also developed a model allowing for 
the existence of interconverting conformers in NOE measurements. 

Figure 7.7 The selected open models (those giving the best end group super- 
imposition} and the final structure obtained {from Tonge et al. with permission [43]). 
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7.2.5 Molecular dynamics 

Molecular dynamics can also be used to derive low energy conformers. Basically, 
whereas X-ray data give a static, time-averaged picture of atomic locations, 
molecular dynamics simulates their instantaneous motions [7, 44-46]. Atom 
coordinates change with time, depending upon the kinetic energy terms and 
forces exerted by surrounding atoms [stretching bonds, bending angles}. Starting 
with a low-energy structure, the method defines the evolution of the system by 
integration over time of Newton's second law of motion, according to the 
formalism of classical mechanics, and defines atom trajectories 

Over short periods of time, motions can look erratic, but over longer periods 
slower coherent collective motions can be distinguished, giving some insight 
about preferred local fluctuations of selected groups. From these trajectories, 
low energy structures can be periodically sampled giving, in favourable cases, 
some insight about conformational changes [7]. However, owing to the high 
frequency of bond stretches, the time steps must be very short {typically about 
1 fsl, so that actual methodological and computational limitations restrict 
trajectory lengths to about a few hundred ps [7]. Conformational changes 
generally occur on longer time periods Iparticularly for large biomolecules) so 
molecular dynamics is not ideal for studying substantial barriers or sampling 
large regions of the conformational space. It appears to be more useful for local 
exploration. 

Typically, one starts by generating about 100 structures and minimizing 
them. The results are used as starting points for dynamics simulation over a 
nanosecond at temperatures near 600~ Selected configurations (for instance, 
every 100th)are then optimized to a local minimum. 

7.2.6 Ellipsoid algorithm method 

This method of constrained optimization, related slightly to the distance 
geometry approach, has been proposed as robust and avoiding local minima 
[47-49]. An interesting point is that the algorithm uses only one constraint per 
iteration, and makes large and discontinuous steps at the beginning of the 
process, allowing a start from random conformations. We suppose {as an 
example} that the conformational search can be carried out choosing as 
variables only n dihedral angles [to limit the dimensionalityl. Each conformer 
is assigned a point in an n dimension conformational hyperspace. From a 
randomly chosen initial conformation {a point in this conformational 
hyperspace), the algorithm starts with an ellipsoid which contains the entire 
conformational space of the molecule. Then, the algorithm will generate a 
sequence of ellipsoids with constantly decreasing volumes and containing at 
least one solution: the centre of the ellipsoid being the solution obtained at 
that iteration. Each iteration is based only on one inequality constraint, which 
is violated at the centre of the ellipsoid until a feasible conformation is found, 
that is a conformation in which no constraints are violated. Only at this point 
does the algorithm make an iteration based on an objective function [it may, 
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for instance, be the conformational energy depending upon the dihedral 
angles). Constraints generally consist of bounds on distances (derived, for 
instance, from NMR measurements). 

At each iteration, the new ellipsoid generated is defined as containing the 
entire half of the old ellipsoid on the side of the negative gradient for the 
constraint investigated (since this part must contain the optimum solution). 
This process results in an iterative decrease of the volume of the ellipsoid by a 
constant "shrink" factor, depending upon n, leading asymptotically to the 
minimum (when constraints are no longer violated and the objective function 
converges). The coordinates of the centre of the resulting ellipsoid define the 
dihedral angles for a conformation. 

The method has been illustrated on Ala dipeptide. From a grid of 36 starting 
structures mapping a two-dimensional conformational space, 33 of them 
converged to the global energy minimum. Other test cases include energy 
refinement of met-enkephalin (a five aminoacid, 76 atom peptide determined 
by 20 dihedral angles) or an 11 residue segment [Arg-17-Met-27] of the 
polypeptide glucagon. The ellipsoid algorithm was also applied to the 
ionophore 18-crown-6, in conjunction with molecular dynamics refinement 
[48]. This approach found the conformations previously determined and new 
low-energy forms. 

The ellipsoid algorithm was further extended to docking problems: 
determination of the three-dimensional structure of enzyme-ligand complexes 
(if at least one of the two partners of the association is known, e.g. from X-ray 
studies) [491. 

7.2.7 Generic shape algorithm 

To obtain start structures of macrocyclic compounds to be submitted to energy 
minimization, Gerber et  al. [50, 51] proposed a "shape-guided conformation 
generation" retaining only the raw shape of the rings. "Generic shapes" are 
obtained through an approximate two-dimensional Fourier representation of 
real ring shapes (derived from existing crystallographic data), where only the 
two more significant coefficients, one radial and one axial, are retained. Give 
these "generic shapes" randomly scattered increments generates sets of 
different ring conformations. These representations violate small-scale 
requirements (correct bond lengths, angles), but it may be assumed that the 
little discrepancies they present will be quickly removed in the minimization 
stage. The process is stopped after a {user-defined) number of steps giving no 
new additional structure. 

7.2.8 Efficiency and reliability 

Flexible cycloalkanes constitute a privileged structural population to test the 
predictions of conformational search methods. For instance for cyclononane, 
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four low-energy forms have been characterized from manual or algorithmic 
dihedral drivers (Figures 7.8, 7.9). The RIPS method [25, 26] found these low 
energy forms and also proposed three additional structures within 11 kcal/mol 
of the absolute energy minimum: the Twist-Chair-Twist-Chair (TCTC)form 
lying at only 2.3 kcal/mol above it. Note that two of these new forms have also 
been found by the tree search of Lipton and Still [2]. 

More recently, this problem was revisited by Saunders [52] using his 
stochastic search method and the MM2 or MM3 force field. An eighth 
conformer, of C~ symmetry but with a methylene group folded into the interior 
of the ring and largely higher in energy than the seven found previously, was 
identified "as a definite min imum"  on the potential energy surface. In the 
same study, Saunders also proposed to characterize the similarity between 
pairs of conformers by their "conformational distance": rms deviation of the 
dihedral angles between the two structures (taking into account a possibly 
different atom numbering). He also proposed a process using smaller and 
smaller kicks to determine the minimal geometrical perturbations necessary 
to induce conformational interconversion. This allows for determining the 
attraction basin of conformers (the part of the structure space where a starting 
geometry will refine to the conformer in question) and the most likely 
interconversion pathways. 

To characterize the efficiency and completeness of various approaches, it 
was interesting to compare them on the same example. This was the aim of the 
work of Bohm e t  al. on a nine-membered lactam [53]. On the one hand, it may 
be expected that systematic search in principle generates all possible solutions, 
but is highly demanding of CPU time and storage location. On the other hand, 

TBC TCB TCC SBC (C1) 
0 0.75 0.77 3.16 

Figure 7.8 The well established conformations of cyclonane. T-- twist, B = boat, C = 
chair, S = skewed. Numbers give the relative MM2 energies (kcal/mol)above the 
minimum (TBC} (adapted from Ferguson et al. with permission [25]). 

SBB TCTC SCC 
10.34 2.22 5.67 

Figure 7.9 The new conformations of cyclononane derived from RIPS. T = twist, B = 
boat, C = chair, S = skewed. Numbers give the relative MM2 energies (kcal/mol)above 
the minimum (TBC). Conformations TCTC and SCC were also proposed by the tree 
search of Lipton and Still ([2])(adapted from Ferguson et al. with permission [25]). 
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molecular dynamics or Monte Carlo methods cannot guarantee the 
completeness of the search. From tests where each method considers about 
1000 start structures, it appears that molecular dynamics, Monte Carlo 
methods or the generic shape algorithm are equally as efficient, finding most of 
the 39 local minima up to 60 kJ/mol above the global minimum. Generation 
from crystal data issued from the Cambridge database found a more limited set 
(23 local minima in place of 39), but had the advantage of an experimental 
origin. On the contrary, systematic search (working on a comparable set of 
start structures) appears "extremely inefficient", with only five solutions 
proposed (presumably because the number of starting structures was too low 
for a complete exploration of the conformational space)(Figure 7.10). 

A comparison of diverse methods was also carried out on the example of n- 
octane [39]. Molecular dynamics stands apart, since it is more effective at local 
searches. Simulated annealing appears as the fastest (more rapid than the 
Monte Carlo method of Chang et  al. [22] or the stochastic search of Saunders 
[27]. Systematic search with 60 ~ steps is very low but, if the resolution is 
decreased down to 120 ~ (which still appears enough for straight chains) it 
competes quite well with other methods. Unfortunately, distance geometry 
was not tested. 

These conclusions are consistent with the comments of Howard and 
Kollman [7], who concluded that "systematic search, helped by expert systems, 
may be the most convenient approach for small or moderately sized systems, 
whereas larger molecules may be more amenable to distance geometry or 
molecular dynamics coupled with experimental distance constraints". 

Energetic aspects also deserve some comments. So, Bohm et  al. [53], in their 
comparative study, noted that some differences appear as to the ordering of the 
local minima, depending upon the force field or the quantum methods used, 
and recommended some caution for structural discussions based on energy 
differences. Furthermore, as stressed by Howard and Kollman [7], an important 
(but often neglected, and still difficult to treat) aspect is the role of the 
surrounding medium. For charged or highly polar species, interaction forces in 
aqueous or biological environments are expected to largely differ from those 
existing in the gas phase or in the crystal, and their influence has to be taken 
into account. Explicit inclusion of solvent molecules or appropriate 
approximations to simulate their effects are necessary (but of course costly) 
processes to get a better insight about the relative energies of the active 
conformers in living media. 

Another comparative study was recently carried out on highly flexible 
cycloheptadecane, including systematic and random searches in both internal 

0 H 

Figure 7.10 
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(torsion angle) and external (Cartesian)coordinates, molecular dynamics and 
distance geometry. Within 3 kcal/mol of the global minimum, 262 confor- 
mations were discovered, and it can be assumed that the conformer of minimum 
energy is only 8% in the conformational mixture at room temperature. None 
of the methods found all the low-energy conformations in a single search, but 
all, except distance geometry, located the same global minimum. In this study, 
distance geometry and molecular dynamics seem to be less effective in finding 
all low energy conformations in comparable CPU times [54]. 

In a recent study [55], distance geometry and molecular dynamics were 
compared in their ability to search the conformational potential energy surface 
of ~ cyclodextrin. Possible structures were first generated by distance 
geometry and then used as starting points for molecular dynamics simulation. 
Distance geometry appears able to find structures of a lower energy than those 
obtained by minimization of X-ray or neutron diffraction structures. 
Molecular dynamics simulations find structures still lower in energy than 
those derived from distance geometry. However, owing to the low temperature 
adopted (298K), they can only explore regions around the distance geometry- 
starting structure whereas distance geometry traverses much larger regions of 
the conformational space. Molecular dynamics therefore appears as a way in 
which to locally refine the distance geometry structures. For neighbouring 
applications, see elsewhere [56, 57]. 

7.3 MODEL BUILDERS 

When constructing compounds, at least in the simplest cases, a chemist can 
guess well enough, thanks to the general rules of conformational analysis, low- 
energy conformers close to the solution given by an energy minimization 
program. It can be hoped that mimicking the chemists reasoning by automated 
exploitation of the usual knowledge would significantly speed up 
conformational analysis. 

In this field of molecular architecture, the use of computer's power to derive 
a user-friendly interface, providing the chemist with reasonable conformations 
close enough to the true local minimum energy, is of course a highly attractive 
prospect. An estimated geometry not too far from the real one saves steps (and 
CPU time) in energy minimization processes. It lessens the risk of stopping on 
false or local minima. Furthermore, in some fields (e.g. surface and volume 
calculations) it may give reasonably acceptable solutions, without the need for 
more refined treatments. 

7.3.1 From 2D to 3D representations 

Such model builders may also appear to bridge the gap between 2D and 3D 
representations, i.e. producing a reasonable 3D representation from a 
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topological description (connection table augmented with some 
stereochemical descriptors). Indeed, numerous computer-aided structural 
treatments (structure/activity or structure/property relationships, structural 
elucidation, spectral simulation, etc.) largely rely on 2D representations of the 
molecular framework. In other words, they consider only the molecular 
topology (as do planar structural formulae), possibly augmented by flags 
specifying stereochemical features (configuration of chiral centres, cis or trans 
orientation, etc.). On the other hand, in molecular modelling, conformational 
refinements or the derivation of electronic features start from a 3D 
representation of the structure as the input of downstream simulation 
programs. 

Early attempts seemed mainly devoted to giving a guess geometry before 
starting minimization programs, whereas the aim of more recent works is to 
propose reasonable solutions able to be used directly, thanks to reasoning 
relying on the artificial intelligence methodology. The expert system 
approach, in so far as it mimics the chemist's reasoning, has been used in 
systems such as WIZARD relying on predicate calculus. By other respects, 
CONCORD uses both rules and tables to derive bond lengths and angles, with 
the help of a simplified energy-minimizer. The model builder AIMB proposes 
analogical reasoning from the knowledge already captured by crystallography. 

Among the basic features, it can be noted that at a first level of approximation 
(except for severe steric constraints), bond lengths and valency angles may be 
considered as fixed at standard values (according to atom type or hybridization), 
and the problem is mainly to determine dihedral (torsional) angles. Relieving 
bad van der Waals contacts and ensuring ring closure are therefore the main 
points to examine. A major difficulty arises from the flexibility of acyclic 
chains or large ring systems able to have several conformations of comparable 
energy, whereas smaller rings exhibit more rigidity, possibly with largely 
distorted geometries for the more severely strained small-ring structures. We 
shall now briefly present the main features (in our opinion) of these recently 
proposed model builders (for a detailed review, see elsewhere [58]). As quoted 
by the authors, the main requirements these automatic model builders must 
satisfy are: robustness, the ability to process large files with a high conversion 
rate, speed in automated mode, and of course, high quality models {including 
stereochemistry) for varied chemical types. 

7.3.2 Earlier attempts 

The MBLB [59] program of Gordon and Pople uses a connection table, the 
geometrical information being conveyed implicitly in the ordering of entries 
within the connection table. The model is able to reproduce user-defined 
rotameric states around bonds. However, it cannot cope with structures 
arbitrarily created by a structure generator. Non-sequential ordering within 
the connection table may also lead to problems. 

Other methods start from a planar representation (such as those obtained on 
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the screen of a graphic terminal) with symbols to specify up and down 
orientations with respect to the plane of the screen. This gives approximate 
Cartesian coordinates sufficient to start geometry optimizations [60]. 

It has been also proposed (SCRIPT program) to use a library of templates (i.e. 
molecular fragments)with a set of rules governing the assembly of these 
fragments into complete molecules [61]. This makes possible systematic and 
automatic generation of complex cyclic structures (including fused, spiro or 
bridgehead systems). Similarly, the SCA system (Systematic Conformational 
Analysis) [62, 63] uses a list of allowed conformations for single rings and 
determines torsion constraints from a set of rules. 

7.3.3 Application of distance geometry 

The approach of Wenger and Smith [15] appears as a variation of the distance 
geometry of Crippen et al. The  input is formed by a connection table 
augmented by stereochemical indicators, parity bits (0 or 1) specifying the 
configuration of chiral centres, cis or trans orientation, etc. 

The next step is to set distance ranges in the distance matrix of the Crippen 
approach. The connection table provides information about atom 
connectivity, but none on distances. However, some (approximate)values can 
be derived for 1,2 and 1,3 distances and limits on possible 1,4 distances: 

�9 1,2 distances are set equal to standard bond lengths. 
�9 1,3 distances Ibetween 2 atoms, i,k bonded to a same atom j) are easily 

determined from 1,2 distances and the valency angle (0): 

d2,k = d2,, + d~,, - 2d,,d~k cos 0 

(For 1,2 and 1,3 distances, a common value is used as the lower and upper 
bounds in a Crippen distance matrix). 

�9 Minimal and mammal 1,4 distances are then determined. So, for an sp 3 
moiety they respectively correspond to dihedral angles of 0 ~ and 180 ~ 

�9 Other distances are set to 2.0 ,/k (minimal value)to avoid overlap between 
non-bonded atoms, and for upper values to 10 n l/3 ,/k {where n is the number 
of atoms in the molecule). 

The program can also deal with the constraints existing in small cycles, and 
uses additional geometrical information provided by the user. Given the 
Crippen distance matrix, the next step searches for a set of Cartesian 
coordinates of the atoms consistent with these interatomic distance ranges. 
This is solved in the usual way detailed previously (see p 202) by computing a 
metric matrix {with distances referring to the centre of mass), determining its 
first three greatest eigenvalues and the corresponding eigenvectors, and then 
refining the coordinates to satisfy configuration and distance constraints. 

Although very attractive, this approach suffers some limitations (already 
indicated for distance geometry}. The computation process begins with the 
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placement of atoms at random locations (consistent with the distance ranges). 
So, it only leads to a random sampling of the conformational space, rather than 
to a systematic exploration. Furthermore, no energetic criteria are considered, 
so that structures satisfying the distance constraints, but chemically 
"unreasonable", can be proposed and these have to be examined by usual 
energy minimizers. 

7.3.4 WIZARD 

The WIZARD system [64], and the more recent COBRA ~ [65, 66] program, 
apply expert system techniques to propose preliminary estimates of likely low- 
energy conformers. Although limited in its first version to saturated acyclic 
hydrocarbons, it is now able to treat more complex structures up to 200 atoms 
and accept varied file formats. Rather than directly proposing an exact 
solution, the aim of WIZARD at the beginning was mainly to suggest a 
tentative conformation within the energy well of a local min imum,  that will 
be subsequently refined by energy minimization. 

Let us first emphasize some common components of expert systems, and 
examine them through WIZARD implementation.  The main parts of any 
expert system are (Figure 7.11): 

A knowledge database which gathers a body of knowledge extracted from 
a human expert. 

4 ~  

End-user 
Interface 

FACTS 
DATABASE 

J 
< 

Developer 
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T 
User 

KNOWLEDGE 
DATABASE 

Expert 

Figure 7.11 WIZARD expert system schematic. 

'COBRA is available from Oxford Molecular Ltd, Oxford, UK. 
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�9 A set of tools for querying and utilizing this knowledge. This is performed 
by an inference engine, which uses the knowledge to derive rules. These 
rules will be applied to the study of the problem under investigation. 

�9 A database of facts which gathers data about the problem to solve. 

Among the characteristics of expert systems, one can note that, in contrast to 
exploiting a database, the knowledge can be applied to situations not 
previously encountered. Thanks to these new problems, this knowledge can be 
updated in a way similar to that of human experts. 

Knowledge is stored as rules, which often take the form: 

IF such condition is fulfilled 
THEN such consequence results. 

Each rule draws one conclusion about a subject, and is dependent upon one or 
more terms (either observed or inferred). For instance: 

"the bond angle at an atom can be inferred to be increased 
IF it is between two bulky groups (observed)and 
IF these groups show steric interaction {inferred}" [64] 

To fire an action the system uses backward chaining through the rules until 
all the inferred terms are reduced to observational terms: according to whether 
the response is yes or no, it decides upon the appropriate conclusions. 

The way in which the knowledge is encoded significantly influences the 
efficiency of such expert systems. With procedural approaches, the know- 
ledge is directly expressed in a programming language such as Fortran. In a 
declarative fashion, the knowledge is stored as declaration relationships 
between objects. Then an interpreter in an advanced artificial intelligence 
(AI) language {such as Prolog)ensures diverse tasks: maintaining and updating 
the database, performing backward chaining, monitoring input and output, 
etc. 

Although procedural approaches deal more rapidly with numerical 
problems, the declarative method clearly separates the tools and the 
knowledge which they address. So, one can focus on the expression of 
knowledge without worrying about procedural details. The ability of the AI 
languages to manipulate high level concepts makes the reasoning easier. It 
allows an efficient way to update the knowledge database and solve conflicts 
between rules. For these reasons, WIZARD uses both Prolog and Fortran (for 
some subroutines and subsequent MM2 calculations). 

In WIZARD, the rules forming the knowledge base stem from a double 
origin. Some have been extracted from chemists. For instance (Figure 7.12): 
"Place everything on a diamond lattice and see if it fits without problems. If it 
does, then quit, otherwise continue..."; or (pentane rule): "a C5 chain with a 
g+/g- pair (dihedral angle = + 60 ~ is much less stable than a conformer lacking 
such a pair." [64] 

Others are derived from examination of about 100 model molecules analysed 
by the MM2 molecular mechanics program. About 200 rules were used, in 
which fewer than 50 are specific of conformational analysis. 
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Figure 7.12 Mapping the carbon framework onto the diamond lattice. Butane anti 
(top), gauche (right)and cyclooctane (left)(from Randic et al. with permission [67]). 

Predicate calculus formalizes arguments and inference by manipulating 
symbolic formulae. Reasoning is independent of the domain. 

After the data have been read in from a 2D representation, the program 
identifies "conformational units" [patterns such as phenyl, cyclohexane, 
carboxyl) and generates a "unit graph", an abstract representation of the 
structure to be built. Nodes correspond to conformational units and edges 
specify the mode of junction (acyclic, fused or bridged rings). Every unit is then 
assigned one (or a few) subconformation, taken from a library where a series of 
templates are stored [65, 66]. The basic assumption is that each unit will 
exhibit the same behaviour in large molecules as in a small, isolated molecule, 
unless strain deforms it. A "suggested" structure is built by assembling these 
local subconformations. "Suggested" structures are criticized before being 
accepted, since subconformations only reflect local interactions and do not 
deal with long range effects: tests concern energetics, junction between units, 
bad van der Waals contacts, violation of pentane rule, etc. An estimation of the 
strain energy is obtained by simple summation of a few selected interaction 
terms (constituting a very crude force field). So, for a simple butane bond, the 
gauche arrangement is set approximately 0.8 kcal less stable than the anti 
conformation (Figure 7.13). If the suggestion is rejected another "assemblage" 
is tried. 

With the COBRA program, a total search of the conformational space can be 
performed by examining all possible combinations of units. To find the lowest 
energy structures more efficiently, the search is directed using a tree 
representation of the search space and evaluating a cost path at each step of the 
assembling process without explicit use of minimization methods (in contrast 
to the subunit optimization of Scheraga e t  al. [23, 24], where energy 
minimization is invoked at each step). 

From the examples given (first on acyclic alkanes, then on functionalized 

E (kcal/mol) 

Figure 7.13 

0.0 0.8 

Strain energy estimation. 
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compounds), it appears than WIZARD does suggest conformers quite close to 
the solutions obtained from complete MM2 optimization, and so significantly 
speeds up the exploration of the conformational space. 

The same methodology is used to build strained structures. If a problem 
occurs in one conformation, a similar process of suggestions and criticisms is 
performed on deformations of templates, and rules are activated to relieve 
strain. The treatment of highly branched molecules, however, would require a 
very large set of special case rules without the certainty that the system is 
complete. So, they were replaced by a few suggestions for strain resolution, 
ordered according to their probable hierarchy in energy {dihedral twist first, 
then angle bond opening, and finally bond lengtheningl. Hydrogen-bonding can 
be also considered. These rules are sequentially examined and criticized: if 
they lead to conflicting decisions, one goes to the following rule to perform the 
resolution of the conformer. For instance, in di tert-But methane, the 
alteration of dihedral angles appears insufficient to relieve van der Waals 
repulsions, and increasing the central angle tBu-C-tBu is invoked {Figure 7.14). 

Figure 7.14 Alternative alteration of dihedral or valence angles. 

For more refined applications, the combination of WIZARD and MM2 was 
claimed to explore the conformational space of a saturated acyclic 
hydrocarbon more rapidly than by using the torsion angle driver of MM2 alone, 
and with a greater confidence of complete coverage than manual generation 
followed by MM2 minimization lup to seven degrees of freedom can be 
efficiently handled). Thanks to its high level symbolic reasoning, it also allows 
for finding otherwise ignored minima, and avoids some poor suggestions. The 
system was recently extended [68] combining model-building and distance 
geometry, the latter method performing a conformational search if templates 
are lacking {Figure 7.151. 

%1 

Figure 7.15 Comparison between WlZARD's suggestion (dashed lines) and MM2 
optimization (solid lines); non-strained conformer of isopropylhexane (from Dolata and 
Carter with permission [64]). 
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7.3.5 CONCORD 

CONCORD aims to generate approximate 3D structures from a connection 
table representation of molecules [69, 70]: ~ 

CONnection table ~ COoRDinates 

For any given molecule, CONCORD gives a default geometry assumed to be of 
low energy, and usually proposes shapes not too far from exact minimization 
(by molecular mechanics or quantum methods). The basic organic elements 
are treated (H, C, Si, N, P, O, S and the halogens)with a maximum atomic 
connectivity of 4. The upper limit for acyclic, mono-, poly- or heterocyclic 
structures is about 200 non-hydrogen atoms. CONCORD is a hybrid system 
which combines the expert system approach and a pseudo-molecular 
mechanics approach. Many decisions about bond and torsion angles are 
derived from rules, whereas an approximate optimization procedure deals with 
complex cases, as for example, less common cycles. Basically, the majority of 
the effort is spent on the more rigid fragments while little time is wasted on 
flexible chains and their environment-dependent conformations. 

At the origin, CONCORD treats as input the compounds stored in the MACCS 
database 2, using SMILES (Simplified Molecular Interpretative Line Entry System), 
a linear notation system based on graph theory and encoding molecules as 
alphanumerical strings [71-75]. More recently, additional input formats have also 
become accepted. Similarly, at output a variety of formats are provided for 
interfacing with molecular or quantum mechanics programs, or various databases. 

Some limitations have been pointed out: 

�9 Only one conformer is generated. This may be a drawback for molecules 
that are able to exist in various low energy states, and for which the 
reacting conformation is not in all cases the most stable or the crystal one. 
However, it was stressed that owing to the difficulty of exploring the 
conformational space with complete safety on one hand, and on the other 
hand storing many conformers, "searches need to be suggestive and not 
exhaustive" [69]. 

�9 Until now, only organic structures have been treated, although extension 
to other elements of the periodic classification is planned. 

�9 The rules encoded are very general, and may lead in some cases to 
unrealistic structures that must be rejected [however, some warning or 
error messages are included in the program). 

Recently, Hendrickson e t  al. [76] compared geometries proposed by 
CONCORD with experimental ones from the Cambridge Crystallographic 
Database. The conversion rate was about 69%. For 90 structures where both 
types of data were available, it appears that CONCORD gave quite satisfactory 
geometries for rigid systems, but failed for flexible structures with several 
rotatable bonds. 

2CONCORD distributed by TRIPOS Associates, St Louis, MO. 1987. 
3MACCS, The Molecular ACCess System. Molecular Design Limited, San Leandro CA, USA. 
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7.3.6 CORINA 

The CORINA model builder [77, 78] automatically generates 3D structures 
from connection tables. For flexible molecules, it proposes one conformation 
(that assumed to be the lowest energy), but a series of different conformations 
can be also created. The basic units are monocentric configurations (an atom 
with the stemming-bond directions} which are gradually put together, 
respecting appropriate bond lengths and torsion angles. Deviations in standard 
geometrical parameters are allowed for cyclic compounds or strained systems. 
A pseudo force field (ensuring rough molecular mechanics calculations) helps 
in refining cyclic structures. (A detailed description can be found elsewhere 
[58].) From the examples presented, CORINA predictions show good 
agreement with experimental crystallographic structures (from the Cambridge 
Database J and the program seems particularly interesting for macrocyclic, 
polymacrocyclic molecules or organometallic compounds. 

The reliability of CORINA predictions was tested in comparison with 639 X- 
ray data from the Cambridge Database. CORINA was able to process the whole 
set with a very high conversion rate; 89% of ring atoms and 42% of all non- 
hydrogen atoms were located well, with an accuracy comparable to X-ray data, 
showing the efficiency of the approach. It must be noted that "for more than 
one third of the structure, the X-ray geometry was reproduced, including also 
the flexible parts of the molecules" [58]. 

7.3.7 Analogy In Model Building: AIMB 

Another strategy was adopted with the AIMB project [79, 80]. The aim was to 
provide an automated model builder using analogy to propose 3D models 
through symbolic reasoning. Rather than using rules, as the previous systems, 
AIMB relies on existing data which implicitly contain knowledge on building 
molecules. The process avoids heavy minimization programs and works like 
an expert system. It therefore looks not too dissimilar to the usual behaviour 
of the chemist when he manually builds molecular structures. 

In this field of model building, the analogy concept may be expressed as "if 
two compounds have a similar structure, they may have a similar geometry". 

Like an expert system, AIMB stores all its knowledge about molecular geometry 
in a knowledge base, which gathers the conformations (3D coordinates} of typical 
molecules captured from the Cambridge X-ray Crystallographic Database. 

Given a target molecule to be constructed, the program looks for analogous 
structures in the database. If there are none, the target is divided into smaller 
parts and each of these subcomponents is in turn examined as a new target to 
be sought for in the crystal file, and so on until analogy is found or the program 
stops if no analogous solution exists in the knowledge base. 

Underlying this approach is the basic assumption that recognizing subunits 
provides partial solutions where the interactions within the subunit are 
already minimized. So, the global problem is now reduced to cope with 
interactions between subunits {that is, interactions near their ffontier). To 
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provide an easier treatment of these interactions, each subcomponent is given 
some information about the remainder of its structural environment thanks to 
dummy atoms (atoms ~ to atoms involved in solving the subunit 
identification). These dummy atoms, which to some extent specify the 
direction of the hanging free valences, are also very useful for the alignment 
steps when making the new bonds assembling subunits into the structure. 

Some of the main components of the AIMB system are now briefly presented 
and these processes summarized in Figure 7.16 a-d [79]. 

The knowledge base is given a hierarchical organization: three classes 
distinguish ring assemblies, rings and chains. In each class the components are 
differentiated according first to their size, then on the basis of atom and bond 
types. 

After perceiving the target structure (thanks to a graphical interface 
converting the chemist's 2D input-diagram into a connection table with 
symbolic stereochemistry), the analyser identifies rings, chains, aromaticity 
and stereochemistry. It determines if close analogous solutions (or the target 
itself) are contained in the knowledge base, and it selects the most closely 
related ones. If no analogous solutions are found, the analyser breaks down the 
target into subunits. Then each of them is treated as a new problem. 

The analogy finder looks for analogies to each subproblem in the knowledge 
base. An evaluator scores each match to determine the best solution 
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Figure 7.16 Steps in the AIMB process. (a) Division into subproblems when no 
compound analogy is directly found for the target; (b) analogy scores for ring 
subproblem 1 (higher value, lower analogy)(dummy atoms are represented by stars); (c) 
assembling fragments using dummy atoms for alignment (fusion misfits between 
dummy and real atoms are indicated); (d) comparison of AIMB model (dashed lines) 
with crystal structure (solid lines)(from Wipke and Hahn with permission [80]). 
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depending upon the atom and bond attributes such as type, valence, 
hybridization, stereochemistry, bond type, etc. 

The model assemb]er fuses the solved pieces, using dummy atoms for 
alignment, and displays the structure. An explanation modu]e gives 
supporting data for the proposed model. Display of the parent compounds of 
the subunits retained, and literature references and data about the constraints 
that Were (or were not) met are also provided. 

The results presented by the authors, even at an initial prototype stage, 
suggest that the approach is very efficient [for a detailed discussion of the 
performance of the method, see Wipke and Hahn [80]. Note that AIMB leads to 
solutions fairly close to those obtained by true energy minimizations, and 
works at a rate allowing for interactive manipulations. Increasing the 
knowledge base not only gives better, more realistic models, but also, albeit 
more surprisingly, increases speed: better analogies are found sooner, since 
fewer constraints need to be relaxed before analogues are found. Furthermore, 
since the program evaluates more than one analogy per subproblem, it is able 
to generate alternate or best models, so it gives some capabilities to 
conformational search. 

As to the drawbacks mentioned, prediction would be poor if only a few 
distant analogues were found. Another problem stems from long range 
interactions. Although d u m m y  atoms generally allow for conveniently 
assembling subunits, in a few cases long range interactions may cause some 
trouble. However, this situation seems quite infrequent: such effects are 
generally implicitly taken into account and encoded in the experimental 
crystal structures, so they rarely heavily intervene when assembling subunits. 

A combined distance geometry and joining approach also relying on a 
knowledge base was proposed by Ai and Wei [81]. In this knowledge base, a 
record is a molecular fragmentary structure or a conformational unit that 
includes the bond lengths, angles and torsion angles of a centre atom in a 
specific environment. So the knowledge base is small and easily handled. 

7.3.8 Generation of databases of calculated structures 

Increased efforts in drug design have recently concentrated on the search for 
new leads from which potentially active drugs may be derived, a field where 
geometrical information is obviously of prime importance. This has prompted 
various manufacturers or users to build databases gathering "reasonable" 3D 
structures inferred from 2D structural formulae. Such databases are therefore 
complementary to the Cambridge Crystallographic Database gathering 
experimentally determined geometries. 

In this quest for new leads, an important preliminary step is the search for 
pharmacophoric patterns, that is, a group of atoms considered as necessary for 
a molecule to be recognized by a receptor and therefore possess the desired 
activity. This research area, which closely relies on the concept of "molecular 
similarity" is presented in Chapters 11 and 19.. The field is now rapidly 
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evolving thanks to the development of varied 3D search techniques. New tools 
include 3D similarity searching, representation and searching of flexible 
molecules, and the design of new molecules fitting 3D constraints. 

However, beyond pharmacophore search (which remains up to now the 
main concern), current applications of 3D databases are now also concerned 
with chemical documentation, modelling, synthesis, etc. and reach new 
structural areas such as macromolecules or proteins [92]. 

Two main avenues may be distinguished: 

�9 introduction of 3D information and property values in the large files of the 
Chemical Abstract Service [82], or 

�9 the extension to 3D structures of the large existing commercial or 
proprietary databases associating 2D structural information with 
biological or pharmaceutical activity [83-85]. 

The generation of these large 3D databases was extensively carried out 
thanks to various model builders, such as CONCORD [69], AIMB [79, 80], 
WIZARD or COBRA [64-66] as detailed in the preceding paragraphs. 

CONCORD, for example, was used on a very large scale to generate 3D 
databases. Rusinko et  al. [69] indicated that the Lederle Laboratories 
{American Cyanamid Companyl have built a database of ca. 224,000 
structures. Similarly, using CONCORD, Henry et  al. [83] proposed two 3D 
databases, MACCS-II DrugData Report-3D (MDDR-3D) and the Fine 
Chemical Directory 3-D (FCD 3-DI, built from existing 2D databases at 
Molecular Design Limited. According to the authors, in their 1990 releases, 
MDDR contains 20,637 compounds [release 90-2)and FCD 66,000 (release 
90-1). The THOR database of Martin et  al. gathers ca. 70,000 structures 
translated from the MACCS database using the MEDCHEM program (MACCS 
acronym for Molecular ACCess System, the structure database management 
system from MOLECULAR DESIGN LIMITED} [72-74]. 

For years, the Chemical Abstract Service (CASI has collected very large 
databases encoding about 11 million compounds and about 100,000 Markusch 
(generic) structures. Using CONCORD, a 3D database for about 4.5 million 
substances was generated [82]. To evaluate new techniques or strategies of 
exploitation, two subsets (60,000 compounds) have been extracted, one 
general, the other one limited to rigid substances. For 6000 structures, besides 
3D coordinates, varied characteristic properties or indices are now available: 
elctronic and energetic information from the semi-empirical molecular orbital 
MOPAC package {HOMO, LUMO, maximum, minimum and mean values of 
electronic populations ), hydrophobicity, van der Waals surface area and 
volume, and topological indices such as flexibility etc. 

In other respects, the Chapman and Hall Dictionary of Drugs, the source of 
information on over 6000 drugs and their derivatives, was similarly converted 
to a 3D database built from the Chem-X software [84] ~, according to a method 
similar to AIMB of Wipke and Hahn [79]. 

'Chem-X: molecular modelling software developed and distributed by Chemical Design Ltd, 
Oxford, UK. 
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Obviously, beyond the efficiency of the model builder used to generate a 3D 
database rapidly and with high conversion ratios, (as discussed some pages 
above), the interest of such 3D databases largely depends on some key points: 

�9 reliability of the generated geometries 
�9 availability of efficient database management systems and search 

strategies. 

As to management systems, the MACCS system, for example, used for 
storing and searching chemical structures as 2D entities was extended in 
MACCS 3D to include additional files containing the 3D information (linked 
by a structure/model correspondence to the 2D files)[85]. An obvious 
advantage is the capability of merging data from varied fields (spectroscopy, 
computational structural chemis t ry) in to  a corporate database allowing 
scientists from different disciplines to access the information more efficiently. 
This point was discussed by G~ner et al. [93]. The possibility of accepting the 
diverse description languages used for automated treatment of 2D structural 
formulae or various formats for connection tables is also quite useful. 

Special strategies had to be defined for searching three-dimensional 
substructures (or pharmacophores)[86, 87]. For example, speed can be attained 
by dividing searches into two parts: a fast prescreen uses an inverted key 
system, of the form: 

atom type 1 distance atom type 2 

where the atom type includes five fields {element, neighbours, n electrons, 
hydrogens, formal charge). After the key search (finding structures containing 
pairs of atoms with the correct type at roughly the correct distances), an atom 
by atom geometric search is performed, relying on the Ullman algorithm 
(isomorphous subgraph algorithm, see p 345). Angle or dihedral constraints 
can be handled. Excluded volumes (no atoms of the substructure at given 
positions) can also be taken into account. The examples presented showed that 
test pharmacophores {already proposed in the literature) can be easily found. 
Interestingly, the system can also identify classes of compounds structurally 
different from those used for the derivation of the pharmacophore but still 
containing it. In some cases, the search can even indicate bond "frameworks" 
in which the important atoms are connected in novel ways or held rigidly in 
the desired geometry. Such answers may constitute a possible origin of 
worthwhile suggestions for new directions in drug synthesis [88]. See also 
Chapter 12 for more details. 

Conformational flexibility must also be taken into account, since it is a 
problem of prime importance in the handling of 3D structures. Indeed, the 
active conformation of a drug (that bound to its receptor) is not necessarily the 
lowest energy conformation (in solution) nor the crystal geometry. This was 
established for instance for acetylcholine in its active conformation, binding 
the nicotinic receptor. Flexibility can be introduced both in the query (com- 
bining rigid and flexible parts for allowing more degrees of freedom) and in the 
search {performing conformational analysis or "flexible fitting"), or in the 
database, storing several conformations for the same structure [85, 89, 92, 94]. 
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This latter solution, retaining for each compound some of the lowest energy 
conformers, would in fact require much disk space. Modules were therefore 
developed allowing work with a database storing only one conformation per 
compound but able to build and search for various low energy conformations 
for each compound without explicitly storing them, as with the ChemDBS-3D 
module of the Chem-X commercial software [89-90, 95]. Using rule-based 
conformational searching, the algorithm generates additional low energy 
geometries, allowing only certain values of torsional angles for rotatable 
bonds. Searching is carried out with keys evaluated for each possible 
conformation generated. Generation of low-energy conformers is also possible 
with the ALADDIN program [96], for example in order to test hypotheses 
about a pharmacophore model. Structural descriptions may also include some 
flexibility [97]. 

Several works discuss the reliability of the structures generated in these 
databases. A recent paper [90] explores the ability of various packages to 
generate the structure of small molecules in their bound conformations and 
compare them with those in ligand complex crystal entries in the Brookhaven 
Protein Data Bank. The programs reviewed include CONCORD, COBRA, 
ChemDBS-3D, developed by Chemical Design Ltd. [89, 90] and CONVERTER ~. 
This package developed by Biosym. Technologies, relies on a distance 
geometry method. The aim was to examine whether such programs can 
generate the active conformation of a drug {that which bounds the receptor}, a 
challenging problem due to conformational flexibility. It is to be noted that 
CONCORD produces a single low-energy conformation whereas the other 
programs can propose more than one low energy structure wherever possible. 
Furthermore COBRA was devoted to conformational analysis rather than rapid 
2D-3D conversion of large flies. According to the authors, ChemDBS-3D is 
limited by the size of the structures and achieves only a 62% conversion rate, 
but then gives structures very close to experiment. CONCORD performs well, 
with a high conversion rate, and generally good results. More problems arise 
with COBRA for that type of application. CONVERTER, with 100% 
conversion and good proposals, is claimed to be the best. Rather puzzling is the 
fact that the PDB (Brookhaven} and the CSD [Cambridge)structures are not 
always in agreement. This may reflect conformational changes occurring 
during binding, the influence of conformational flexibility, or perhaps a 
consequence of the accuracy of the coordinates of the ligands in the PDB [90]. 

Computer-generated structures obtained from ChemModel, the model 
builder proposed by Chem-X, were also compared to X-ray crystallographic 
data [91]. In 57% of the cases, computed structures and experimental data are 
in good agreement, whereas CONCORD gives only 38% satisfactory results. 
According to its authors, the superior performance of ChemModel is due to the 
generation of multiple structures covering the entire conformational space. 

In conclusion, it must also be recalled that searching 3D databases is far 
more demanding on computational resources than 2D database searching [90]. 

-~CONVERTER is a product of Biosym Technologies Inc, San Diego, CA. 1992. 
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Indeed, in a pharmacophore search, the query generally comprises few atoms, 
distance ranges are rather large, and proprietary databases may  contain several 
analogous compounds. This generally results in numerous  answers unless 
efficient strategies are introduced. Parallel computing seems therefore an 
attractive alternative [90]. However, not surprisingly, a 3D search is not by 
definition more efficient than a 2D search: if a good conformer is not 
considered, the solution can be missed [95]. 

Although the field is rapidly evolving, 3D searching has up to now been a 
complex and cumbersome procedure. To obtain a molecule containing a given 
pharmacophore, rather than searching for a structure already stored in a 
database, the recent approach of "de novo design" tries to build from atoms or 
fragments molecules meeting the imposed criteria or constraints. The 
efficiency is now limited by the number  of available structural  primitives and 
not by the extent of the database. Such applications will be developed in 
Chapter 12. 
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Plate I Usual molecular models: (a) wire flame and space filling models of ampicilline 
represented on a calligraphic system {note the small radius chosen for hydrogen sphere 
to emphasize the shape of the framework of heavy atoms); (b) ball and stick model: 
crystal structure of the octahedral complex between iron and pyridoxal-isonicotinoyl- 
hydrazone Fe(PIHJz. The metal ion is coordinated to two molecules of PIH located in 
nearly perpendicular planes; (c) space filling model of cyclodextrine. 



Plate II Hydrophobic potential for iso-leucine. From Connolly dot surface, 
(a) triangulation gives a set of planar facets. Parts corresponding to the re-entrant 
surface patches are clearly visible. (b) Molecular surface colour-coded according to the 
hydrophobic potential, represented together with the structural skeleton; blue areas 
correspond to hydrophilic regions near the carboxyl and amino groups. 

Plate III Building atomic spheres by rotation of a spherical lune. Note the smooth 
appearance obtained with a high number of facets (a), whereas with a low number 
(b), facets still appear, as on a golf ball, with shading distortion at their junction. 



Plate IV Summary of the results c 
an MD simulation performed for 
n-butane using the simulated 
annealing technique and the MM 
force field as implemented in the 
HyperChem program [36]. Top left 
initial gauche structure; top right: 
final anti form. The diagram in th 
lower part of the figure displays tl~ 
evolution of temperature and torsi 
angle to as a function of time. 

Plate V Potential energy surface o 
the 1,2 difluorohydrazine HFN-N 
molecule calculated at the Hartre, 
Fock (3-21G basis set) level as a 
function of two variables: q0 and 0, 
the FNNF and FNNH torsion ang 
respectively. Energy values, in 
kcal/mol, refer to differences with 
respect to the absolute minimum 
M3. 

Plate Vl Solid model of the HOMq 
of pyrrole represented as red and 
green isosurfaces (at + 0.05 au) 
together with a ball and stick moc 
of the structure of the compound 
(the nitrogen atom is depited by tl 
blue ball). The horizontal and 
vertical planes contain coloured a 
maps and contour levels (from 
+ 0.0006 au, by steps of + 0.0001 
from outside to inside), respective 
generated from the MO values i n  
corresponding planes. 



Plate VII Isovalue surfaces of the 
HOMO-  1 of pyrrole represented 
solid models in the same conditic 
as those of Plate VI. 

Plate VIII Selected contour levels 
the HOMO-1 of pyrrole represent 
in the vertical mirror plane of the 
molecule and superimposed to th, 
structural model. Dashed contou~ 
correspond to negative values. 
Contour values (from outside to 
inside)" + 0.05, + 0.075, + 0.10; 
+0.125; +0.15 au. 

Plate IX Isovalue surfaces (at + 0.] 
au) of the HOMO of pyrrolidine 
represented as solid models. 



Plate X Isovalue surfaces {at +_ 0.0~ 
au) of the 5alg MO of ferrocene 
represented as solid models. 

Plate Xl Isovalue surfaces (at +_ 0.0 
au) of the 4e lg MO of ferrocene 
represented as solid models. 

Plate Xll Two different views of th 
superimposed Connolly envelope 
(red) and isovalue (at 0.002 au) 
molecular electron density surface 
(yellow) of pyrrole. 



Plate XIII Solid model of the 
molecular surface of pyrrole 
coloured according the MEP value 
(ab initio SCF calculation using th 
3-21G basis set). The lowest 
(negative) values correspond to the 
red zone, with a min imum at 
-38 kcal/mol. 

Plate XIV Solid model of the 
molecular surface of pyrrolidine 
coloured according the MEP value 
(ab initio calculation using the 
3-21G basis set). The lowest 
(negative) values correspond to the 
red zone, with a min imum at 
-72 kcal/mol. 

Plate XV Isoenergy surfaces (at 
-35 kcal/mol)of the MEP of pyrrol, 
(calculated as in Plate XIII). 



P l a t e  XVI Molecular surface of 
ferrocene [Fe(CsH5)2 ] coloured 
according to Emt {equation 10.9)for 
electrophilic attack. Protonation 
sites are easily seen as the red zones 
around the metal atom. Reprinted 
with permission from J. Weber and 
P.Y. Morgantini, EPFL 
Supercomputing Review, 1990; 14; 
�9 1990 Ecole Polytechnique F6d6rale 
de Lausanne. 

P l a t e  XVll Structural mode 
and benzene-chromium(CO 
together with solid models 
surfaces calculated for nucl 
Colour coding of the surfac, 
purple,-5.0; green,-10.0; yq 
- 17.0 and red, - 18.0 kcal/m, 
permission from G. Bemarc 
46: 1992; 126; �9 1992 Schw~ 
Verband. 

Plate XVlII Molecular superimpositions. (a) Superimposition of a family of chlor 
congeners {antibacterial derivatives)with all phenyl rings coincident (wire frame 
representation), (b) superposition of ball and stick models of saxitoxin (green) and 
tetrodotoxin {yellow) for the best fit of atom positions. 



Plate XIX Representation of macromolecules. {a) Simplified representation of lyzozym 
{a small protein of 129 amino acids}. Only the main chain is displayed. The lowest insl 
{pink) corresponds to an helix seen along its axis. {b) Space filling model of human 
haemoglobin. {c} Stick model of human haemoglobin.The structure is coloured accordi 
to the various residues. {d) Ribbon model of human haemoglobin. The subchams are 
displayed in different colours. [b-d: from J. Webber et al., reference 131 of Chapter 13 
with permission.) 
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The surface and volume of a molecule represent important parameters 
involved in various research areas: intermolecular interactions, drug design 
and protein folding [1]. Molecular volume intervenes in many computational 
approaches of drug design [2] since steric fit is an important feature in the 
"lock-and-key" or "hand-and-glove" models of molecular interactions 
involved in pharmacophore recognition. It also appears as one of the 
fundamental properties of macromolecules [3, 4], directly related to their 
physicochemical characteristics. Density, for instance, is a useful parameter in 
the study of the tertiary structure of proteins: its local variations in the interior 
regions and packing defects have been related to conformational fluctuations, 
folding or hydrogen exchange [5]. 

The external surface represents the interface with the surrounding medium. 
It gives a first image of the areas able to bind ligands or other macromolecules, 
interact with the solvent, etc. This view may be refined by the concept of 
"structured surfaces" [1], i.e. surfaces encoded (or "coloured")with the value 
of a property such as electrostatic potential or hydrophobicity to obtain a 
better insight as to the chemical complementary needed for corresponding 
areas of interacting systems. Many research papers deal with molecular 
surfaces or volumes, dedicated either to their quantitative evaluation or 
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representation on a graphical display. Although these goals may appear, at first 
glance, quite distinct, they often rely on the same approaches and are therefore 
closely related. So here we will discuss the two aspects of evaluation and 
visualization at the same time. 

Two general approaches have been developed: numerical and analytical. The 
analytical methods give an exact answer from a set of equations but require 
somewhat involved geometrical computations. Numerical algorithms sub- 
divide the object into a large number of small elementary similar subunits, for 
example elementary cubes or "voxels" (volume elements), the union of which 
reproduces the actual object. The method is only approximate, but can be 
efficiently programmed and is very convenient for the logical operations 
(Boolean operations) involved in the comparison of surfaces or volumes for 
several neighbouring molecules. 

8.1 DEFINITION OF MOLECULAR SURFACES AND VOLUMES 

Various definitions of the external surface of a molecule have been proposed: 
for a brief historical summary see Richards [6]. Figure 8.1 shows the various 
molecular surfaces. 

8.1.1 Van der Waals surface 

Elementary models generally represent a molecule as an assembly of rigid hard 
spheres featuring the atoms. Their radii are chosen equal to the atomic van der 
Waals radii {associated with the closest approach distance for non-bonded 
atomsl. The union of these atomic spheres is accepted as a common 
representation of the molecular body, and is known as the van der Waals 
contour (or volume} [7, 8]. For large biomolecules, one can choose not to 
represent the hydrogen atoms but only groups built from every heavy atom and 
its attached hydrogens {"united atoms"), these groups being still represented as 
spheres [3]. 

The van der Waals contour gives a good estimate of the molecular shape for 

Reentrant su t ,, 
. . -  � 9  �9 �9 .. 

Molecular surface 

, Solvent probe 

Accessible surface 

Van der Waals surface 

Figure 8.1 Various molecular surfaces. 
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small molecules. However, for larger biomolecules, an important part of this 
surface is embedded (buried} in the "interior", and therefore less able to 
interact with an incoming ligand or a solvent molecule. This leads to the 
concept of "solvent-excluded volume", gathering its own van der Waals 
volume and the interstitial volume (empty but too small to accommodate a 
solvent molecule). The extent of this "solvent-excluded" part is, of course, 
difficult to estimate, since it is not directly obtainable by experiment. 
However, with reasonable assumptions, Connolly estimated the van der Waals 
volume of the small protein crambin (i.e., 4245 A 3) to represent only 82 % of the 
solvent-excluded volume, assuming a radius of 1.5 A for a spherical probe 
representing the solvent. The percentage even decreases to 76% for a 3.0 A 
probe radius [5]. Some comments about the influence of the selected probe 
radius will be given later. 

8.1.2 Solvent accessible surface 

Another definition is therefore necessary to characterize the external boundary 
area that can be occupied by the solvent without penetrating the molecule. Lee 
and Richards [9] first introduced the solvent-accessible surface. A small probe 
sphere simulating the solvent molecule is rolled onto the molecular shape and 
the solvent-accessible surface is defined as the locus of the centre of this probe 
sphere. In fact, it corresponds to a contour pushed out from the van der Waals 
surface by a distance equal to the radius of the rolling probe sphere (usually 1.4 
A to mimic a water molecule). 

8.1.3 Accessibility 

For each atomic centre one can define its own accessibility: that percentage of 
the accessible area compared to the total area of the associated atomic sphere 
(with a radius equal to the atomic van der Waals radius plus the probe radius). 
Several computer algorithms implement this definition [see the references in 
[10]. For instance, Lee and Richards [9] used sections by a set of parallel planes 
with a given spacing: surface elements are computed as the product of the non- 
overlapping arcs of circles (corresponding to the section of the atomic spheres) 
by the spacing of the planes. Another model spreads a set of 92 points on the 
atomic surface and counts the remaining ones after eliminating those located 
in the intersection volumes [11 ]. 

Results obtained for some proteins (ribonuclease S, lysozyme and 
myoglobin) indicate that non-polar atoms (C, S) occupy approximately 40-50% 
of the accessible area (Figure 8.2). Changing from a hypothetical extended 
chain to the native folded conformation leads to an average change in 
accessibility by a factor of about 3, although individual values for the various 
residues may be significantly different [9]. 
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7% Main chain 
ain chain 17% 

Side chain 

33% "~ ~.. Side chain 
43% 
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Figure 8.2 Relative accessibility of polar and non-polar atoms for lysozyme {from Lee 
and Richards with permission [91). 

. 

This concept of accessibility was later modified by Lavery e t  al. [12]: 

To better evaluate the effect of the macromolecular environment on a 
given subumt {base, sugar, phosphate), an "intrinsic accessibility" was 
defined. It takes into account the fact that when atoms are engaged in a 
molecule, their accessibility decreases {due to steric hindrance with other 
atoms of the molecule). So, the accessibility of a given atom in a subunit of 
a macromolecule must be compared to its intrinsic accessibility in the 
subunit {considered alone} rather than referred to a free atom. 
One has to differentiate the way in which the solvent approaches the 
macromolecule. For water, for instance, the contact can correspond to the 
hydrogen or the oxygen atoms. Two indices have been proposed: one, the 
"accessible area", measures the area of the receptor protein within which 
the attacking molecule may be placed, in at least one of its possible 
configurations, without intersection with the macromolecule envelope. 
The second, "fractional configurational flexibility", relates to the fraction 
of the possible configurations of the attacking molecule placed on the 
accessible area, which does not suffer intersections with the 
macromolecule. It is to be noted that these accessibility parameters are 
related to the van der Waals surface (and not the accessible one). So, some 
artefacts in the definition of Richards are suppressed {for certain atoms, 
accessibility would increase if the radius of the probe gets larger). 
Furthermore, to avoid lengthy calculations, the simple spherical model of 
water can be maintained, provided that different radii are chosen (1.2 A if 
the atom contacting the receptor envelope is a hydrogen, 1.4 A if it is an 
oxygenl. 

Some results [12] as to the role of the environment for a macromolecule have 
been presented for fragments of a B--DNA model formed from five base pairs 
(poly{dG--dCl or polyIdA--dT}l. Passing from isolated nucleic acids to a single 
helical strand and then to double helical strands induces a successive 
reduction in the accessible area of all the base atoms. However, the extent of 
this reduction largely changes from site to site. For example, for isolated 
guanine, O~, N, and N3 have the largest accessibility in the free base. In the 
single helix, N~ becomes practically inaccessible, and in the double helix, N, is 
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the more accessible. The effect of sequence variations appears, in many cases, 
non-negligible and specific. Comparing, for instance, sequences a 
(GC-GC-GC-GC-GC),  b (AT-AT-GC-AT-AT)and c (TA-TA-GC-TA-TA), it 
comes that O6(G)is nearly as accessible in the three sequences, whereas N3(G), 
totally inaccessible in sequence a, becomes accessible in b or c. 

When interpreting the reactivity of a given site within a macromolecule, this 
criterion of accessibility may play an important role, in complement to 
electronic factors (expressed, for instance, by the molecular electrostatic 
potential). For guanine, in DNA motifs, N3, in spite of a high value of the MEP, 
is only slightly reactive toward various alkylating agents because of a low 
accessibility (Figure 8.3). 
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Figure 8.3 Guanine. 

8.1.4 Molecular surface: Richards" surface 

Later, the molecular surface ("Richards' surface")was defined as the contact 
surface (part of the van der Waals surface accessible to the probe sphere) and 
the reentrant surface (inward facing surface of the probe when it is 
simultaneously in contact with two or more atoms) [3]. Patches of the convex 
van der Waals surface are joined by concave parts of the probe spheres "blocked 
at the opening of the narrow molecular fissures". The join between faces is 
smooth, in contrast to the van der Waals surface, which presents "sharp 
crevices" at the intersection of the atomic spheres. This surface envelope 
corresponds to the solvent-excluded volume [3]. 

8.2 ANALYTICAL EVALUATIONS OF SURFACES OR VOLUMES 

Connolly presented an analytical method for calculating the Richards' 
molecular surface [10]. To generate the various parts of the surface, the method 
uses, as a working tool, a probe sphere rolling over the molecule, tangential to 
each atom, each pair or triplet of neighbouring atoms. In this respect it thus 
looks like an outgrowth of an earlier numerical evaluation (the "dot 
algorithm", see below). Depending upon the probe-sphere situation, different 
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P 

(a) (b) 

J 

Figure 8.4 Parts of the Connolly model. (a) Representation of the reentrant surface 
associated with a probe sphere in contact with two atoms {part of a toms}. Circle P 
corresponds to the trajectory of the centre of the probe sphere; (b) placement of a probe 
sphere tangential to three atom spheres. The inward facing part of the probe sphere is 
shown as a curved triangle in the centre of the figure {from Connolly with permission [ 10]). 

parts of the surface are generated forming a connected network covering the 
molecule (Figure 8.4). 

These pieces, looking like the faces of some curved polyhedron, are either 
convex or concave parts of spheres or saddle shapes (parts of a toms)between 
neighbouring atoms, and join at circular arcs. They are defined by the surface 
they lie on and their boundary contours. The corresponding geometrical 
expressions are detailed by Connolly [ 10]. The Connolly algorithm begins from 
the probe sphere tangential to three atoms (therefore with no more 
translational degrees of freedom). This fixes the end points of the trajectory of 
the probe. Then, these trajectories limit the area of a rolling probe with two 
degrees of freedom. This approach is convenient not only for evaluating the 
molecular surfaces (thanks to the analytical formulae given by Connolly [10], 
but also for displaying these surfaces on a video screen (see below}. 

The analytical approach has been further extended to the calculation of the 
van der Waals and solvent-excluded volumes [5] of a molecule considered as an 
assembly of rigid hard spheres, the starting point being the analytical 
representation of the molecular envelope (Figure 8.5). Thanks to an analytical 
partition, the molecular volumes are treated as formed of simpler shapes. 
Internal polyhedra are derived from the solvent accessible area or van der 
Waals contours. They are calculated as truncated triangular prisms. Their 
bases are the flat triangles built from the centres of triples of atoms forming a 
concave triangle. The volume outside the polyhedron but inside the surface is 
decomposed in a set of disjointed pieces: convex pieces (volume between the 
centre and the convex face of an atom), saddle pieces (formed of conical pieces 
and a part of the hole of a torus) and concave pieces (triangular pyramid minus 
a piece of probe sphere). Corrections are introduced for cusps (when the 
molecular surface intersects itself). 

The method of evaluation is exact for the van der Waals volumes, whereas 
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Figure 8.5 The Connolly approach of molecular surfaces and volumes (2D 
schematization). (a) Analytical partition of solvent-excluded volume {right)and van der 
Waals volume {left}, and (b) constituent pieces. Interior polyhedra are not represented 
{from Connolly with permission [5]}. (i)convex piece, spherical; (ii) concave piece, 
triangular pyramide minus a part of a probe sphere; (iii) saddle piece, revolution axis: 
interatomic line segment D {from Connolly [5] with permission}. 

for the solvent-excluded volumes, the error {due to cuspsl is estimated at about 
0.01%. Connolly stresses, however, that the extent to which physicochemical 
properties can be represented by a static assembly of rigid hard spheres, with 
no account of potential flexibility, would also have to be questioned. 

Some applications have been presented. For instance a comparison of the 
volumes of two bovine pancreatic trypsin structures (the diisopropyl- 
fluorophosphate-inhibited {DIP) and the benzamidine-inhibited onesl was 
carried out. The volumes differ by no more than 240 A 3 for a total van der 
Waals volume of about 21 000 A 3. The high accuracy in the evaluation makes 
the method attractive for comparing 3D structures of macromolecules in 
slightly differing conformations [due to oxidation state, presence of ligands, 
crystal form, etc.). Other potential applications suggested may be volume 
measurements for packing defects in protein interiors, ligand-binding pockets 
on protein surfaces or void volumes at subunit interfaces [10}. 

As previously indicated, the analytical approach of Connolly can be used for 
surface representation. Each face defining the surface is converted into a set of 
concentric curved polygons which can be drawn on a calligraphic device 
[Figure 8.6}. A method for displaying an analytical molecular surface on a 
raster system has also been developed by Connolly [13, 13a]. 

The accessible surface is directly involved in solvation phenomena, and it 
may be interesting to examine its variations with conformations {and resulting 
effects on solvation energy)when carrying out energy minimization. This is 
seldom possible due to the heavy calculations needed. To get numerical 
expressions, quickly evaluated and able to be differentiated during mini- 
mization processes, Hasel et al. [14] proposed a pairwise function of radii and 
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Figure 8.6 Reentrant surface construction. Accessible parts of the inward facing 
surface of the torus are represented as a disconnected set of saddle-shaped rectangles 
(from Connolly with permission [10]). 

atomic coordinates. The basis of this is the approach of Wodak and Janin [15]. 
The approximate solvent-accessible surface area is obtained by summation of 
individual atomic accessible areas (A,). For any atom i: 

with: 

A, =S,H(1.O-b, , /S , )  

S, = 4g(r, + r )  ~ 
b,, = ~(r, + r)(r, + r, + 2 r  - d)[1 + (r, - r, )/d] 

S; is the total accessible area of isolated atom i (radius r,) for a given probe (rs), 
and b, the accessible area removed from atom i by overlap with atom j (at a 
given separation d). 

Although working well when "atoms" represent polyatomic fragments (protein 
residues), the method underestimates the area when multiple overlap is 
important, and the authors turned to a parameterization of the preceding equation: 

A, = S , H ( 1 . 0 - p , p , b , / S , )  

Atom parameter p, takes into account hybridization and substitution of atom 
i, and connectivity parameter p, distinguishes bound atoms j from more 
distant ones, having less positional predictability. Parameters p, and p, were 
optimized so as to reproduce the area calculated by an exact analytical method, 
over a learning set of about 270 largely varied molecules. The results indicate 
that the model works fairly well, although areas are systematically 
underestimated by approximately 8%. According to Ooi et al. [16], 
solvation energies can be related to solvent-exposed surface area. Indeed, from 
areas calculated with the model of Hasel et al., solvation energies are 
satisfactorily reproduced, provided a scaling coefficient (about 1.27) is used. 
Analytical formulae are also proposed for the calculation of first and second 
derivatives, with a view to the possibility of incorporating crude but rapid 
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solvation energy evaluation into molecular mechanics minimizations. 
The more complex problem in the derivation of the molecular surface is 

related to the determination of spaces inaccessible to the solvent and limited 
by the reentrant surface. In the GEPOL model [17, 18] such spaces are filled 
with a new set of spheres created between the original atomic spheres {Figure 
8.7). These new spheres are subsequently used in surface and volume 
calculations. The program examines all the pairs of spheres that it is possible 
to generate from the original atomic spheres. Next, it determines whether 
there is some space inaccessible to the solvent probe, and ff so, it creates a new 
sphere between the pair. This is added to the original set (to update the set of 
sphere pairs}, and the process is iterated until no new spheres can be created. 
According to the authors, the program favourably competes with the widely 
used Connolly's dot approach at both precision and time levels. For a fast 
calculation of molecular surface and volume, the approach has been completed 
[ 18] by a triangular tessellation process. To select parts of the spherical surfaces 
that form the molecular surface, each sphere is divided into 60 spherical 
triangles (by projection of a pentakisdodecahedron) used as starting points for 
the representation or evaluation of properties. 

8.3 NUMERICAL METHODS 

Various possibilities have been proposed to represent the molecular envelope. 
A first approach distributes points uniformly on the surface {or inside the 
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Figure 8.7 In the GEPOL model, the reentrant surface is approximated by inserting 
new spheres among the original atomic spheres {from Pascul-Ahuir and Silla with 
permission [17]). 
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molecular body if volume information is needed). It looks very attractive, since 
only a limited number of points is necessary for visual perception. Relevant to 
this approach is the dot algorithm of Connolly, widely used for the 
representation of structured surfaces [13, 13a]. 

Rather than distributing points on the surface to be investigated, several 
numerical methods prefer to sample the space through a 3D lattice of a given 
mesh size. These grid or cube methods can perform both surface and volume 
calculations or representations. Another advantage is that their data structure 
is able to easily reflect some neighbourhood relations between surface points. 
Although not commonly used in that field, octree techniques can give 
additional efficiency in the treatment [1] thanks to their hierarchical 
organization and recursive subdivision methods. 

8.3.1 Dot method 

Among the various algorithms presented for representation of the solvent- 
accessible area (or the van der Waals surface), one of the most popular is the dot 
algorithm of Connolly [13, 13a]. It relies on the same concepts as analytical 
surface calculations, but is limited to generating surface points without 
computing boundary arcs and faces. This type of representation eases the 
calculations and provides a simple graphical display. Other advantages are that 
this dot representation does not overload the drawing, and it allows for a 
simultaneous visualization of the atomic framework, which is very attractive 
for chemists. 

To derive the surface dots, a probe sphere is placed tangential to each 
atom, each pair or each triplet of neighbouring atoms. When the probe is free 
from overlapping with other atoms, points on the contact circle (latitude 
circle) are selected to represent the molecular surface. The probe is then 
moved to generate another set of dots. The same is done for points of the 
reentrant surface or concave faces (contact with two or three atoms). The 
spacing of the points between and along the latitude circles is fixed so as to 
obtain a regular density of dots per unit area. The probe is moved in angular 
increments, so that the method is a numerical one. The algorithm also 
produces outward pointing normals (useful for hidden line removal or 
rendering treatments) and approximate elementary areas associated with the 
points (Figure 8.8). 

Figure 8.8 Dots are located along contact circles of a probe sphere rolling along the 
molecular shape. 
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Scattering dots onto the molecular surfaces provides a very convenient way 
in which to represent some physicochemical properties on the molecular 
envelope or on a homologous shape pushed away from it by a constant 
quantity (for instance, the radius of a solvent molecule). The property 
(molecular electrostatic potential, hydrophobicity potential, for instance) is 
evaluated on the Connolly's dot positions, and these are colour-coded 
according to the values obtained, giving "structured surfaces" ("4D 
representations") (see Plates IIb and XII). 

Related to dot algorithms, the USURF method [19] was presented as 
providing a significant saving in computer time. In a first step, dots are 
regularly scattered on the accessible surface. This surface is "regarded as a 
solvation layer where dots represent the position of probe spheres in contact 
with the molecule". Each dot on this envelope is assigned a parent atom. Then 
for each dot, probe hemispheres facing their parent atom are generated and 
surfaced with evenly distributed dots. Those penetrating other probes are 
eliminated. The remaining ones give a good approximation of the Richards' 
surface {Figure 8.9). This surface is composed only of concave patches, but in 
most cases, it does not have too rough an appearance, and the gain in computer 
time seems quite interesting. 

8.3.2 Grid or cube methods 

The papers of Greer and Bush [20] or Pavlov and Fedorov [21] constitute 
pioneering works on surface evaluation via numerical approaches. However, 
the recent study of Stouch and Jurs [22] provides a thorough discussion of such 
numerical (d iscre te)methods as to the methodology, accuracy, time 
expenditure and storage requirements. It is therefore used here as the basis of 
our presentation. 

The molecule, defined by the 3D coordinates and the van der Waals radii of 
its constituent atoms, is embedded in a three-dimensional grid of a variable 
size and density of nodes. Nodes are encoded as interior ("in") or exterior 
("out") to the molecular volume using a simple distance test: if a node-atom 
distance is less than or equal to the van der Waals radius of that atom, the node 
is "interior". If the distances of a given node to all atoms are greater than the 
corresponding radii, the node is "exterior". The node status ("in" or "out") can 

(a) (b) 

Figure 8.9 The USURF method. (a) Scattering dots on the accessible surface and 
drawing probe hemispheres; (b) surfacing hemispheres on each probe and removing 
overlapping parts leads to an approximation of the Richards' molecular surface (Moon 
and Howe [19]). 
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be encoded using only one bit. Furthermore,  if one decides to explore the grid 
along a fixed pathway, for instance successive slabs along the z direction and 
for each slab traversal of rows of nodes along the y axis {first rows of the first 
slab from the lowest row to the highest, then rows of the second slab, etc.} then 
the whole grid can be described as a string of bits. Each node is mapped onto a 
bit in this string: the bit value characterizes the status of the node, and its 
location in the string defines the geometrical position of the node in the 3D 
grid (Figure 8.10). 

L GI" P 
I - ~  ~ 1 1 1 1 1 I  

P(X,Y,Z) ~ (I,J,K) ~ Rank in the bit string 

Figure 8.10 If the grid is traversed according to a given order, there is a one-to-one 
relationship between the location of a node in the 3D space and the rank of the 
corresponding record in the bit string describing the grid. 

Such a data structure is very efficient in terms of both storage and handling 
of the structural information. A medium-sized molecule such as 
hydrocortisone (C2,OsH30)is reported to require only 13,000 bytes of storage 
(i.e. 1/70th of a normal  3�89 m. PC floppy disk). 

From the encoded nodes, volume calculation is straightforward, simply 
counting the "in" nodes, since each of them can be assumed to represent an 
elementary cubic volume element  (voxel)within the shape [Figure 8.11). 
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Figure 8.11 Higher node density gives a more realistic estimate of the molecular body. 
Cross-section of the van der Waals volume of trans 1,2 dichloroethylene in a plane 
parallel to the double bond, 1 A above it. (a) Exact solution, (b) grid approximation with 
node densities of 1.5, 3 and 6 bla (bit per linear angstrom]. 
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It seems obvious that the higher the node density, the higher the accuracy, 
but also the higher are the storage requirements and computer time; so an 
acceptable compromise has to be found. Two criteria have been looked for: a 
comparison of the so-calculated volumes with, firstly, experimental heats of 
vaporization of alkanes, and then, volume values derived from an exact 
analytical calculation [23]. A grid density of about 2 or 3 bits per linear 
angstrom [bla) seems very convenient: for the test examples reported, a rather 
crude grid density of I bla leads to results within 10% of the actual values, and 
the error is only 1.5 % for a density of 3 bla (Figure 8.12). 

S t a n d a r d  e r r o r  

5.0 

3 . 0  

0 .0  
JI. �9 �9 11 1 

1.0  3 . 0  5 . 0  

Po in t  d e n a i t y  ( b l a )  

Figure 8.12 Decreasing the standard error on volume calculation with a higher point 
density {from Stouch and Jurs with permission [22]}. 

The surface may be approached retaining "in" nodes having at least one of 
its immediate neighbours with a different status (node "in" with one (to five) 
neighbour node(s) "out"}. However, owing to the discrete nature of the 
sampling, the calculation is less precise. In fact, such "surface" nodes are not 
strictly located on the external envelope but more or less in its vicinity; 
therefore, each "surface" point does not represent an identical surface area. 
Satisfactory results have been obtained thanks to a weighting factor: for 
example, in the Stouch and Jurs treatment, an "in" node with 5 neighbouring 
"out" nodes is certainly very near the actual surface, and will be weighted by 
a factor of 5, whereas an "in" node with only one "out" neighbour is likely to 
be further apart, and will be weighted by 1 (Figure 8.13). A comparison with a 
rigorous analytical evaluation [23] shows that a density of 3 bla is still 
convenient, a higher density giving only a small benefit. 

The influence of some elements in the interatomic clefts has been 
considered by Meyer [24], since points near the surface of two overlapping 
spheres may (or may not) be counted twice. 

The same approach can be readily extended to the surface-accessible area. 
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Figure 8.13 Weighting surface nodes according to the number of their "in" 
neighbours. In this 2D schematization, each node has four neighbours. Point A, with 
only two "in" neighbours, is more likely to be located in the vicinity of the surface than 
point B, with three "in" neighbours. 

That is an important feature for large molecules. It contains its own volume of 
the molecule {i.e. the van der Waals volume} and a contribution from roughly 
half the layer of the solvent probe around the surface of the molecule). The 
molecule is now considered as an assembly of overlapping spheres with radii 
equal to the sum of the van der Waals radius of the atom and the radius 
assumed for the solvent probe. 

As to molecular surfaces (according to Richards' definitionl, which imply 
"reentrant" parts, they can be determined {as a first approximation} with a 
similar approach: starting from a node [25] or voxel [21] representation of the 
accessible area and then erasing parts {nodes or voxels) in the accessible 
volume that are located within a solvent radius from the points defining the 
accessible surface contour {Figure 8.14). 
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Figure 8.14 Shadowed voxels represent van der Waals (inner contour} and accessible 
{outer} surfaces. Erasing appropriate voxels leads to an approximate Richards' surface. 
Dots correspond to atom centres {from Pavlov and Fedorov with permission [21]). 

Very close to the previous approaches are the methods of Higo and Go [26] or 
Karfunkel and Eyraud [1 ], combining the grid technique with the octree data 
structure, for the computation and representation of surfaces and volumes. 
The latter method even allows us to treat not only individual species but also 
"hypermolecules", a set of overlapping molecules [representing, for instance, 
several effectors binding to the same site of an unknown receptor} mapped on 
the same grid. The methods rely on the decomposition of the space containing 
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the molecules into cubic regions, organized in an octree structure. The 
molecule is embedded in a box formed of elementary cuboids (voxels). 
According to their position with respect to the constituent atomic spheres, 
they are classified as "exterior" or "interior", or "surface" if they cross the 
surface. There is no need to further consider octants completely inside or 
outside the molecular surface. For Higo and Go [26], surface octants are 
considered as contributing one half to the molecular volume. Surface octants 
are subsequently decomposed into eight smaller octants tested to determine 
whether they are interior, exterior or surface. The approximation of course 
becomes better as the size of these voxels decreases, the process being repeated 
again until the resolution desired is obtained. 

An original feature in the approach of Karfunkel and Eyraud [1] is the 
consideration of a double layer of points, either on the outer surface of the 
molecular body or just below these outer points. So, the volume may be 
represented via the surface without saving grid points inside the system. In 
Higo and Go's program [26], surface-voxel encoding can be approximately, but 
rapidly, performed by asking whether a minimum sphere containing the voxel 
is interior, surface or exterior to the atomic spheres [these minimum spheres 
have a radius rrnin = (3~ where a is the length of the voxel side). This is 
answered by a simple test on the distance (D) between the centres of the voxel 
and the atomic sphere: comparing D with the sum or difference of the radii of 
the atomic sphere (R) and the minimum sphere (/'mini: R + rm= and IR - rmml 
{Figure 8.15). 

The accuracy of this approach has been carefully checked both on 
simulation models (artificial "molecules" built from an assembly of spheres) 
and a small protein (ca. 751 atoms)with various orientations with respect to 
the embedding box. Starting from initial voxel sides of 2.0 A with five levels of 
subdivision (down to 0.125 A) appears to give quite satisfactory results with a 
calculation that is carried out rapidly {Figure 8.16)[26]. 

Figure 8.15 The distance test is carried out with a minimum sphere containing the 
voxel (Higo and Go [26]). 
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Using the octree data structure, only "surface" regions need to be further 

Stouch and Jurs [22] emphasized the fact that the status of each node 
"(internal or external)can be encoded on one bit. To increase speed, Bohacek 
and Guida [27] proposed updating the string description of the voxel grid 
thanks to bit-encoded templates representing atoms. To encode voxels, 
previous methods evaluated the distances of each node of the grid to atomic 
centres. Here, each atom is represented as a string of bits locally indicating the 
voxels occupied around its centre. To build the set of occupied voxels featuring 
the molecular body, for each atom, given its location, this "local" string is 
transferred at the correct position of the global bit array (with an offset 
representing the appropriate atomic position). Some points (in overlapping 
regions) are written twice, but this is of minor importance in view of the 
overall gain in computer time (Figure 8.17). 

Templates 
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Figure 8.17 The bit string representing the molecule is built by locating at the 
appropriate position template strings corresponding to atoms. 

For graphical display, rather than exploring the full bit array, a special 
algorithm (MAZE)[27] was proposed: it takes into account only those voxels at 
the surface boundary, without sampling interior points. The name is presented 
as derived from the well known rule for escaping a maze: "always go left". 
Once an "on" bit is encountered, surface cells are sought by systematically 
turning left into "on" cells until an "off" cell is reached. The previous cell was 
therefore a surface cell and its position is recorded; the process is then 
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repeated. The results presented suggest that this method can treat, with good 
precision, molecules containing several hundred atoms in less than one 
minute of CPU time on a VAX-class computer. 

8.3.3 Graphical display 

As for grid or box methods, they also provide an easy representation of the 
molecular shape on a graphical display, simply plotting the "in" nodes on the 
"surface". Here also a grid density of about 2 or 3 bla seems sufficient to give a 
representation looking like the common CPK models. If details are necessary 
{to illustrate small local cordormational changes, for example} the density can 
be increased in the relevant area only, so as to maintain a reasonable 
computational time. 

If the sampling is not fine enough, only rough contours are defined {since 
one gets only nodes of the lattice in the vicinity of the actual surface}. 
Refinements have therefore been proposed to derive more aesthetic images. 
In Pearl and Honegger's treatment [25], a positional correction is applied by 
moving the point along the vector connecting it to the host atom's centre, so 
that it lies exactly at the specified radius for that atom {Figure 8.18). 
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Figure 8.18 In the Pearl and Honegger method, the contour appearance is refined 
thanks to a homothetical correction [25]. Bold circles, actual surface points~ hollow 
circles, relevant {approximate} grid nodes. 

In the POLYMOD system of Dubois et al. [28], mainly devoted to the 
representation of electronic shapes, space structuralization by a grid is 
essential for locating the molecular information {Figure 8.20). "True" surface 
points {at the correct distance of the host atom) are sought on the edges of the 
3D grid lattice by interpolation from the selected "surface" nodes {Figures 8.19 
and 8.20}. 
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Figure 8 . 1 9  Refinement of the molecular contour in POLYMOD. Frontier nodes are 
selected within a slice (R + D, R - D ) { h o l l o w  circles}. The intersections with the voxel 
edges (at the correct interatomic distance R} are determined by interpolation {black 
circles} {from Dubois et al. [28]}. 
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Figure 8.20 POLYMOD system. Successive steps in the display of molecular shapes 
(cross-section in a plane}. (a) Extracting the frontier nodes (Dubois et al. [28]}~ (b} 
determining the intersection points; (c) drawing the contour line. 

8.4 B O O L E A N  OPERATIONS A N D  M O L E C U L A R  C O M P A R I S O N S  

Molecular shape analysis is closely related to recognition problems involved in 
drug design or more generally in the field of molecular  interactions [22]. When 
comparing two or more molecular  shapes, the data structures (strings of bits) 
obtained in grid methods  look very efficient to quantify and visualize 
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similarities between molecular shapes thanks to Boolean operations. Union  
allows for determining the total volume shared, in tersec t ion  defines the parts 
common to all structures, and the exclus ive-or  operation selects only unique 
aspects of each structure {parts belonging to one molecule but not to the other) 
(Figure 8.21). 

All these operations are easily performed on the strings representing the two 
molecules, using logical operators (AND, OR, etc. and their combinations) on a 
bit-by-bit basis. The graphical display of the results is easy, since the data structure 
is maintained (Figure 8.22). Such processes suppose, of course, as a prerequisite, 
that the molecules to be compared have previously been superimposed and 
mapped onto the same grid. The problem of comparing molecules with different 
orientations with respect to the referential relies on pattern recognition 
techniques or common substructure search, and will be discussed separately. 

Figure 8.21 
difference. 

UNION iNTERSECTiON DIFFERENCE 
(inctusive 0R) AND (Exclusive OR) 

/ N 

Elementary Boolean operations of union, intersection and symmetrical 

8 . 5  TOWARDS QUANTITATIVE RELATIONSHIPS 

Although molecular surface or volume are not directly attainable by 
experimentation, some quantitative correlations with physically observable 
quantities have been proposed. So, on a set of about 100 simple molecules 
(alkanes, cycloalkanes and chlorinated or brominated derivativesl, Meyer 
points out linear relationships between the (calculatedl van der Waals volume 
and the m o l a r  refract ion or the b cons tan t  (covolume) in the van der Waals 
equation of state [29-30a] ~. Similarly, the heats of vaporization of n-alkanes are 
linear in the van der Waals volumes [31]. More recently, a correlation was 
proposed between molecular areas (calculated by the GEPOL program) and the 
logarithm of the aqueous solubility for 67 molecules of ethers, esters, alcohols 
and ketones [ 18]. 

~The molecular volume derived from the density measured in the liquid phase (not solution} 
V,n = M/Nd is an "inner volume", characterizing the bulk of the substance. It comprises the van 
der Waals volume plus a free volume amounting sometimes to about 50% of the total}. 
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Figure 8.22 Boolean operations on molecular shapes using grid representation. The 
example corresponds to cis and trans dichloroethylene. The drawing {exact contour and 
node approximation} represents the sections of the molecular shapes by a plane parallel 
to the double bond, 1 A above it. 

Van der Waals volumes are rather insensitive to conformational features, but 
surfaces vary much more. Within sets of closely related species they correlate 
with the free volume that encapsulates the molecule in the bulk, so that 
consideration of both the van der Waals volume and surface gives some insight 
into the molecular shape. In a subsequent study, Meyer [82] proposed 
extending these concepts of volume and surface to substituent groups to deal 
with steric effects on reaction rates. Two descriptors are considered: the shape 
is characterized by the substituent's surface to volume ratio (G), bulk being 
approached by the volume of the portion of the group lying within 0.3 nm of 
the reaction centre (Vo). In the quantitative treatment of steric effects, this step 
appears as an update of the approaches from Charton [33-33b] or Verloop et al. 
[34], who suggested taking into account the actual shape of the substituent 
rather than evaluating its size by only one parameter (asthe steric constant of 
Taft [35]). For alkyl substituents, rate constants for varied reactions, including 
acid hydrolysis (a reference process for defining steric effects) correlate with G 
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and V~. However, the fit is less satisfactory when these new parameters are 
compared to the usual steric constants {Taft's E~). 

These quantitative relationships assess the physical meaning of the so- 
defined surface and volume calculations. In return, one can reasonably use 
such calculations to obtain some insight into molecular interaction processes. 
In a recent paper, Meyer et  al. investigated the adsorption of alkanoic acids on 
silica. Cross-sectional areas of adsorbates, derived from a fractal analysis of 
adsorption data, were compared to values computed from atomic coordinates. 
In this way, it was established that these molecules are adsorbed parallel to the 
surface, a rather surprising result since soap-like molecules are generally 
adsorbed perpendicularly [36]. 

Hydration is certainly an important factor for the definition of the favoured 
conformers of polar molecules in biological media. However, until now, its 
treatment usually requires complex computational tasks which cannot be 
easily incorporated in programs aiming at rapid conformational analysis. For 
the inclusion of hydration effects in empirical conformational energy 
calculations of polypeptides, Ooi et  al. [16] proposed breaking down the free 
energy of hydration into additive contributions from the various intervening 
groups. These contributions are assumed proportional to the accessible surface 
area of the groups, and have been scaled by fitting experimental free energy of 
solvation for small test compounds. 

Relationships between the molecular surface area and physicochemical 
properties have been refined by explicitly taking into account the nature of the 
groups or atoms, and more precisely, the charge information. So, for the 
evaluation of polar intermolecular interactions, various authors proposed 
separating hydrocarbon or non-polar portions (with isotropic hydrophobic 
interactions} from functional or polar moieties {which are largely hydrated or 
solvated): the properties investigated were, for example, aqueous solubility, 
partition coefficients and hydrophobicity [37-42]. In a more precise treatment, 
Stanton and Jurs [37] define a set of 25 Charged Partial Surface Area (CPSA) 
descriptors combining molecular surface area and charge information (partial 
atomic charges being calculated from an empirical method [43, 44]). These 
CPSA descriptors, combined with topological ones, were included in a 
multiparametric regression treatment to correlate chromatographic retention- 
times, boiling points or surface tension values. 

Surface area was also invoked to calculate the physical properties of pure 
organic substances such as critical temperature, critical volume and related 
properties for molecules in the range 40-500 u.a. in the Molecular Surface 
Interaction approach of Grigoras [45]. However, since in the critical state 
molecules are in contact with one another, van der Waals radii are no longer 
convenient to delineate the molecular body, and new atomic radii, considered 
as adjustable parameters, must be defined. 

Some information about crystal state can also be gained through volume or 
surface calculations, as shown by Gavezzotti [46, 46a]. In this work, the 
discrete sampling is carried out on local polar coordinates rather than on an 
orthogonal lattice. From each atom centre a probe vector originates with a 
length equal to the selected radius of that atom, and its direction is given 
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systematic variations by steps of ca. 2-3 ~ in longitude or latitude. Surface 
points inside another atom sphere are counted as interior {N~), other points 
being encoded as lying on the surface [No). The free atomic surface for each 
atom is: 

4 R"INo /IN, + No)) 

Summation of atomic free surfaces leads to the molecular free surface Sin. 
Rather unexpectedly, a linear relation has been observed between these free 
surfaces and the number of valence electrons in the molecule. In fact, although 
for isolated atoms van der Waals spheres may be considered as an envelope of 
the outer electrons, in a molecule the relation between the actual electron 
distribution and a surface defined as the union of atomic spheres, taken as rigid 
bodies, is not obvious. From this observation, of entirely empirical origin, a set 
of group increments can be defined, the summation of which leads to a rapid 
evaluation of the molecular free surfaces S,. 

Deviations of calculated molecular and atomic free surfaces with respect to 
group increments, which correspond to standard situations, contain some 
information about molecular conformations and local strain. Steric crowding, 
for example, reduces free surface area. For moderately polar organic 
compounds, S~ is related to the crystal packing energy. Atomic free surfaces 
indicate how strain or crowding are distributed, and then specify the amount 
of cohesive energy provided by each atom. This can lead to interesting 
discussions towards a better understanding of crystal growth in relation to the 
close packing principle {in an ideal close-packed crystal, all atoms are exposed 
equally and have the same energetic relevance, with a maximum of 
intermolecular contacts in their coordination sphere}. 

8.5.1 Topological model 

Quite different to the previous approaches {except, in some ways, Gavezotti's 
studies}, working on real 3D coordinates, Govers and de Voogt [47] proposed 
calculating the van der Waals volume from molecular topology only 
(indication of atoms and bonds between them) by summation of fragmental 
volumes. This model relies, to some extent, on the previous additive schemes 
of Bondi [48] and Moriguchi [49] and the observations of Kier and Hall [50] that 
the van der Waals volume of these fragments correlates with their connectivity 
indices. 

As a basis for the model, indices denote the number of non-hydrogen valence 
electrons. Fragments are limited to one (heavy) atom and its corresponding 
hydrogens ("united atoms').  Their volumes are considered as a sum of orbital 
volumes for valence electrons. One distinguishes sp ~ CH orbitals, other 
orbitals, n orbitals and lone pairs. Methane is the reference. Scaling factors 
allow for a quantum level dependence (according to the principal quantum 
number value). 
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For atomic fragments: 

V = FoV ~ - G o [ ( G -  h)(V h - Vo)+  n(V h - V ) +  p (V  h - Vp)] 

where o -  h, n, p denote the number of non-hydrogen o electrons, n electrons 
and lone pairs in the fragment, and Vo is the reference volume, that of methane 
Vo = 4 Vb (Vh - Vo), (Vh - V~), (Vh - Vp) represent the difference between the 
volume of the combined hybrid orbitals and substitute orbitals (Is + ... sp*). 
Factors F and G express the dependence upon quantum numbers. However, for 
second row elements of the periodic system (n = 2), F~= G~= 1. 

Other similar formulae can be derived to get expressions more akin to that 
of Kier and Hall [50]: 

V = V - n - ~ ( ~ + ~ ) A V  * 

= o - h, molecular connectivity; ~" = o -  h + n + 2p; A and V* representing an 
auxiliary constant and a "hypothetical volume". In this approximation, Fo = 1 
and G o = n  -~. 

Tests performed on a reference set of 33 fragments, where previously 
calculated volumes can be compared to the proposed model, establish the 
consistency of the previous expressions, also confirmed in the study of 
polycyclic aromatics. The model has been subsequently used to derive 28 
additional fragmental-volumes not directly available, greatly broadening its 
structural scope. 

8.6 CONCLUDING REMARKS: ROUGHNESS AND FRACTAL 
SURFACES 

The accessible and Richards' molecular surfaces involve a probe {mimicking 
the solvent molecule} rolling on to the van der Waals contour. What might be 
the influence of the radius of that probe sphere on the shape or extent of these 
surfaces? From another point of view [51 ], at the molecular level, what role can 
the surface irregularity or roughness play in the interactions occurring in 
molecular recognition? 

At first glance, it appears that a large probe cannot enter sharp crevices at the 
surface of the molecule, and would thus characterize only a global shape. On 
the other hand, a very small probe can roll over the entire van der Waals 
contour and penetrate grooves {remember that if the probe radius becomes 
zero, the accessible surface tends to the van der Waals body). 

These points are more easily quantified using the concept of fractal 
dimension of a surface [51]. The fractal dimension (D) can be derived from the 
ratio of the variations of the log of the surface area vs. those of the log of the 
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probe size used: 

2 - D = d(log A) / d(log R) 

where D = fractal dimension, A = molecular surface and R = probe radius. 
As to the meaning of the fractal dimension [52], recall that the concept of 

fractal dimension relies to some extent on the notion of homothety, and the 
elementary relationship: 

log (a d) = d �9 log a 

D can be expressed as the ratio: 

D = ( l o g Q ) / ( l o g k }  

where Q is the ratio of the measures of the objects and k the homothety ratio. 
So, if a segment 1 is submitted to a homothety (centre at origin)of ratio a, the 

measure of the new segment obtained is a*l. Then: 

Q = al  / 1 = a and D = log a / log a = 1 

Similarly, for a square {in a plane} or a cube {both of edge 1) the area or the volume 
become (al) ~ or (al} 3, corresponding to ratios Q - a' or a 3 and fractal dimensions 
of 2 {planar figure)or 3 (volume). Turning again to molecular surfaces, the fractal 
dimension characterizes the degree of irregularity: for smooth surfaces D#2, 
whereas for a nearly completely space-filling surface D#3. 

Such calculations have been applied to proteins: D is evaluated from the slope 
of a plot of log A {calculated, for instance, from Connolly's method} vs. log R. 

It was shown that D approaches 2 for both large and very small probes, 
whereas significant variations {up to D = 2.4) are observed with probe radii 
between 1-3.5 A, revealing a high degree of irregularity at the atomic scale. 
Direct experimental determination of the ffactal dimension of the polypeptide 
backbone agrees with this conclusion [53]. Interestingly, as quoted by Lewis 
and Rees [51], water molecules and side chains fall into this size range, 
suggesting that local variations of the fractal dimension should reflect specific 
interactions. For some molecules {e.g. lysozyme, superoxide dismutase)a  
display of these fractal dimensions as spherical projections allows for 
examining the variations of D over protein surfaces. Regions able to form thigh 
complexes with other proteins (interfaces) appear to be more irregular than on 
average, suggesting that an irregular surface leads to more stabilizing contacts. 
In contrast, active sites, interacting transiently with ligands without forming 
stable complexes, seem to be located in smooth regions {Figure 8.23). 

In the examples investigated, D is unrelated to residue mobility or exposed 
surface area, although regions accessible to large probes are more probably 
associated with smooth regions than with residues on irregular parts. So, 
fractal dimension may constitute a new characteristic of the molecular 
surfaces. This recent concept of local irregularity would perhaps provide an 
original approach to the origin of specificity in molecular recognition processes 
(Figures 8.24, 8.25). 
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Figure 8.23 Variation of the molecular surface area vs. probe radius for lysozyme (log 
scale) (redrawn from Lewis and Rees [51] with permission). 
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Figure 8.24 Angular coordinates for determining local accessibility (redrawn from 
Lewis and Rees [51] with permission). 
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Figure 8.25 Spherical projection of the fractal surface of lysozyme. For direction (~, ~), 
the area is calculated for atoms within a cone {+30"}. V is measured from the 
crystallographic z axis {some values are indicated along the light arcs of internal circles}, 
and ~ from the x axis in the equatorial plane {some values are indicated on the external 
circle}. The location of some residues is shown. Shadowed regions correspond to D > 2.3 
and darker regions to D > 2.5 {redrawn from Lewis and Rees [51] with permission}. 
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The previous chapters have shown how strongly the basic features of 
computer-aided molecular design (CAMD)are connected to the generation and 
graphical representation of molecular architectures. Indeed, it is essential for a 
chemist to rapidly determine what is the spatial arrangement of atoms in a 
given molecular system towards an inceptive evaluation of its chemical 
properties. It is therefore indisputable that the very first and most popular 
application of molecular graphics consists in building or retrieving, visualizing 
and manipulating computerized models of chemical compounds. However, 
molecular graphics and, by extension, C MD would be of limited interest 
without the possibility to also evaluate and display the physico-chemical 
properties of these compounds, such as their molecular orbitals, electron 
densities, electrostatic potentials, reactivity indices, etc. Indeed, stereo- 
chemistry is only one component of the multi-faceted aspects of molecular 
structure, taken in a broad sense, and a modelling with subsequent graphical 
representation of properties related to electronic structure is an indispensable 
extension of the basic steps of CAMD. To this end, the recourse to quantum 
chemistry is an inescapable reality. 

Quantum chemistry may be defined as the application of quantum 
mechanics to atomic and molecular systems, which means that the behaviour 
of the microscopic particles they are made of, namely nuclei and electrons, 
will be described according to quantum theory. It is well known that quantum 
mechanics is based on the Schr6dinger equation, the solution of which 
consists of the wavefunction of the system of particles. In principle, this 
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wavefunction contains all the information needed to describe the properties of 
the system of interest. This had led to the famous statement made by Dirac: 
"The underlying physical laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus completely known, 
and the difficulty is only that the exact application of these laws leads to 
equations much too complicated to be soluble" [1]. Not only for its historical 
value, it is also very interesting to report the continuation of Dirac's 
fundamental article: "It therefore becomes desirable that approximate 
practical methods of applying quantum mechanics should be developed, which 
can lead to an explanation of the main features of complex atomic systems 
without too much computation" [1]. Through the advent of computers and of 
large-scale computing, this very lucid prediction of Dirac has now become a 
reality: whereas it is true that an e x a c t  solution of the Schr6dinger equation is 
still an impossible mathematical problem today for systems of chemical 
interest, acceptable approximate solutions may be routinely obtained for 
molecules containing up to several hundreds of electrons. The main difficulty 
which now faces the computational chemist is thus no longer related to a 
struggle for an e x a c t  so lu t ion-  an impossible task a n y w a y -  but rather to a 
clear understanding of the approximations inherent in a given model, and to an 
unbiased estimation of their influence on the results. In view of the great many 
quantum chemical models proposed so far and available as standard computer 
packages, this is by no means an easy task. 

Many well documented textbooks dealing with both methodological and 
applied aspects of quantum chemistry have been published recently [2-13]. This 
means that we are not going to present the subject in detail, but rather 
summarize the main features and performances of the most commonly used 
quantum chemical models in CAMD, whose hierarchy is depicted in Figure 9.1. 

Although it can be a little arbitrary to compare the respective merits of 
quantum chemical models on the basis of the approximations they rest o n -  
one would definitely prefer a comparison based on the performance of the 
me thods -  the advantage of the scheme shown in Figure 9.1 lies in a clear-cut 
presentation of the most common tools of quantum chemistry. A detailed 
discussion of all the approximations inherent in the models reported in this 
scheme undoubtedly lies beyond the scope of the present monograph. 
However, before examining the key features of these methods and the role they 
play in CAMD applications, it is worth stressing some important points which 
are connected with the scheme: 

1. All the models reported here, ranging from simple H~ickel theory to 
sophisticated MCSCF methodology, have their own merit and field of 
applicability: there is no universal model that is equally valid for small and 
large compounds, whether organic or inorganic, and for the prediction of 
properties so different as conformation, electric or magnetic behaviour, 
reactivity, etc. 

2. Traditional models of quantum chemistry are located on the left part of the 
scheme: they range from the popular semi-empirical schemes such as EH 
or AM1 to the sophisticated post-SCF schemes such as MCSCF or MBPT~ 
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on the other hand, the more recent density functional models are found on 
the right part of the scheme. Broadly speaking, the latter methods 
represent the models of choice to predict with good accuracy the properties 
of large compounds (up to 500-1000 electrons) due to the reasonable 
computational effort they require. 
When starting a CAMD application necessitating the use of quantum 
chemistry, the choice of model is generally strongly dictated by the size of 
the system under study, the availability of adequate computer hardware/ 
software and human experience, etc., which in principle drastically 
reduces the possibilities offered by the scheme. 

The plan of the present chapter is clearly depicted by the scheme in Figure 
9.1: starting from a survey of the Schr6dinger equation and the main problems 
connected with its exact solution, the approximation procedures commonly 
used will be reviewed and discussed on the basis of their practical applicability 
to CAMD problems. We shall therefore be concerned by three main groups of 
methods: ab initio Hartree-Fock and post-SCF procedures, semi-empirical 
models and density functional approaches. Finally, recent applications 
illustrating the capabilities and limitations of these methods will be presented. 

9.1 THE TIME-INDEPENDENT SCHRODINGER EQUATION 

According to the postulates of quantum mechanics, the energy and properties 
of a stationary state of a system of microscopic particles are obtained by 
solution of the Schr6dinger equation [14]: 

H~P = E~P (9.1) 

where, for a system made of n electrons and N nuclei, the Hamiltonian H is the 
five-component energy operator: 

H = T  + T  + V  + V  + V  
e n e n  e e  n n  {9.2) 

E being the energy of the state described by the wavefunction W(1,2,...n, 
1,2,...N); 1,2,...n and 1,2,...N representing the spatial (Cartesian) and spin 
coordinates of electrons and nuclei respectively. 

To the operators of equation (9.2)correspond the following physical 
signification and mathematical expressions: 

Te - kinetic energy of the electrons, 
To - kinetic energy of the nuclei, 
Veo- potential energy arising through Coulombic interactions between 

electrons and nuclei, 
Vee- potential energy arising through Coulombic interactions between 

electrons, 
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Vn, = potential energy arising through Coulombic interactions between 
nuclei. 

T 
s 

8 ~ m  ,=~ + -y--T3y i + 
(9.3) 

where h is Planck's constant and m the electron mass, the summation running 
over the electrons with spatial coordinates (x,, y,, z,). 

3 ~ 3 ~ 3 ~ 

+ ~ + ~ is called the Laplacian, and denoted by V, ~-. The operator 3x, 3y, 3z 

h 2 s  1 V2 
T = 8n2 v=, My v (9.4) 

where M~ is the mass of nucleus v, the summation running over the nuclei 
with spatial coordinates (Xv, Yv, Zv). 

~ s  Ze2 
v = - { 9 . 5 1  

en r 
I=i Vml Iv 

where Zv is the atomic number of nucleus v, e the electron charge and r,v the 
distance between electron i and nucleus v. 

= m (9.6) 

where r,i is the distance between electrons i and j. 

2 1 ,Zve 
(9.zl 

where R,~ is the distance between nuclei ~t and v. 
Expression (9.1) is known as the time-independent Schr6dinger equation, as 

H does not depend explicitly upon time. Indeed, time-dependent interactions, 
such as the effect of a variable electric or magnetic field, are omitted in H as 
expressed by equation (9.1), which is the eigenvalue equation for the energy of 
our system; it has several well behaved solutions, known as stationary states 
�9 k, to each of them corresponds a discrete energy value G. The state of lowest 
energy Eo is called the ground state of the system. 

As the Hamiltonian of the Schr6dinger equation (9.1) does not contain any 
operator acting on the spin of the particles, it commutes  with the usual spin 
operators. In addition, solving equation (9.1) will yield the dependence of the 
wavefunctions ~k on spatial coordinates only. 

When working on systems containing more than two particles, i.e. when n + 
N > 2, which is of course the case for any system of chemical interest, the 
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Schr6dinger equation (9.1)is not exactly solvable. This is the quantum 
equivalent of the well known three (or more) body problem in classical 
physics. Following Dirac's advice [1], it is "therefore desirable that 
approximate practical methods" of solving the Schr6dinger equation are 
available and, fortunately, many of them can be found on the computational 
chemistry market. 

The first approximation performed on equation (9.1) consists of the separation 
of nuclear and electronic motions, as suggested by Born and Oppenheimer [15]. 
Indeed, as the proton mass is larger than that of the electron by a factor of 1836, 
the ratio between the mean velocity of the electrons and that of the nuclei is 
so large that the electrons adapt almost instantaneously their motion to the 
small changes in configuration of nuclei. It is therefore reasonable to assume 
that the electrons move in a field generated by fixed nuclei, which allows us to 
write the total wavefunction qqr, R) as a product of an electronic wavefunction 
~Pd(r) and a nuclear wavefunction ~P~(R): 

�9 (r, R)= ~R'(r) �9 ~"(R) (9.8) 

where r and R are shorthand notations for electron and nuclear coordinates, 
respectively. 

Born and Oppenheimer have then shown that the electronic wavefunction 
Wd(r), which depends parametrically upon the nuclear coordinates R, is the 
solution of the electronic Schr6dinger equation: 

H'  ~PR'(r)= E R' ~PR'(r) (9.9) 

where: 

H ' = T  +V +V . . . . .  (9.10) 

and Ed is the electronic energy of our system, calculated for the nuclear 
configuration R. 

On the other hand, the nuclear wavefunction ~(R) is the solution of the 
nuclear Schr6dinger equation: 

[To + (ER ~+ ~P~ E' voo)i] (R)= �9 (R) (9.11) 

where Ed + Vo, is the potential-energy function for the motion of the nuclei 
(i being the unit operator) and E' an approximation to the exact energy E. 
ER" + V~. is the quantum chemical equivalent to the strain energy defined in 
section 5.3 using empirical force fields: a knowledge of the main features of 
this function of 3N-6 variables (for non-linear molecules), also known as the 
potential energy surface, is essential for conformational analysis purposes, as 
its minima correspond to the various stable geometries of the system, whereas 
its saddle points should be associated with transition states. A good example 
of a potential-energy surface is presented in Plate V, which illustrates the case 
of the 1,2-difluorohydrazine molecule [i 6]. 

Potential energy surfaces represented as functions of two variables, such as 
that of Plate V, are very useful for a quantitative description of the various 
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conformers of a given molecule, allowing, for example, differentiation between 
local vs. global minima. In the case of the HFN-NFH molecule, three local 
minima are found (M1 and M2, which are equivalent, and M4) in addition to 
the global one, M3. 

We may now come back to the solution of the Schr6dinger equation of our 
system. Practically, the main result of the Born-Oppenheimer approximation 
is that, unless one is interested in infrared and Raman spectroscopies, it 
suffices to solve the electronic Schr6dinger equation (9.9). However, for 
performing conformational analysis, this task should be repeated for many 
positions R of the nuclei in order to have a good knowledge of the potential 
energy surface. As in this chapter we are only concerned with electronic 
structure and molecular conformations, one may omit the lowerscripts and 
superscripts of equation (9.9), which becomes: 

H ~lr)= E ~g(r) (9.12) 

where H is the Hamiltonian given by equation (9.10). 
Practically, equation (9.12} is not very much easier to solve rigorously than 

equation (9.1) because of the many-body problem it involves. The next step is 
therefore to make the so-called orbital approximation [17], which assumes that 
the many-electron wavefunction ~g(r)= ~g(1,2,...n) may be written as a product 
of one-electron wavefunctions ~g, called spin orbitals: 

~g(1,2,...n) = %11)~G(2)... ~g~(n) 19.13) 

This is undoubtedly a rough approximation, which amounts physically to 
assuming that the n electrons move independently of one another. The one- 
electron wavefunctions ~, of the so-called Hartree product constituting 
equation {9.13) are defined as the product of a spatial function ~,(x,y,z) and a 
spin function ~(~): 

v ,  ix, = O,(x, 19.14) 

where x,y,z are the coordinates of the electron and ~ its spin variable. 
The spatial functions r are called the molecular orbitals (MOs) of the system 

and as there are only two possible spin functions c~(~)and ~(~)(corresponding to 
the popular spin-up and spin-down picture), spin orbitals are of the form 
~;(x,y,z)o~(~) or ~,(x,y,z)~(~). This amounts to say that a given MO r may 
accommodate two electrons: one with ~ spin corresponding to the spin orbital 
r and one with 13 spin corresponding to the spin orbital r 

A basic problem with equation (9.13), i.e. by approximating an n-electron 
wavefunction by a single product of spin orbitals, is that does not have the 
property of antisymmetry as required by the Pauli principle for such a function 
[18]. This principle implies indeed that any n-electron wavefunction must 
change sign if we interchange the coordinates of any pair of electrons: 

~g(1, 2, 3,. . .n)= -~g(2,1, 3,... n) (9.15) 
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As a suitable n-electron wavefunction satisfying the Pauli principle, one 
therefore uses, instead of equation (9.13), a Slater determinant [19] built over 
the spin orbitals: 

]~g,(1) ~1 (2) "~ ~1 (n} I 
1 I~V~.(1) W..(2)'-" ~G:(n){ 

.!. 
(9.16) 

where 1/k/-n-T is the normalizing factor, calculated assuming that the spin- 
orbitals are orthonormal, ensuring that: 

f q~ * (1,2,...n)qql, 2,...n)d%d%...d~ n = I (9.17) 

with the asterisk denoting complex conjugation and dx = dxdydzd~. 
The antisymmetry property required by equation (9.15)then follows directly 

for the wavefunction (9.16) from the properties of determinants (interchange of 
two columns changes the sign of a determinant). In addition, a determinant 
with two identical rows of zeros means that all the spin orbitals ~g, must differ 
either by ~, or by TI. This leads to the well-known Pauli exclusion principle [ 18], 
i.e. two electrons cannot have the same set of quantum numbers, which is 
actually a consequence of the antisymmetry principle. 

The problem is now to find the best possible MO % to use in the 
determinantal wavefunction (9.16). It will be solved by the Hartree-Fock 
method, presented in the next section. 

9.2 HARTREE-FOCK AND ROOTHAAN EQUATIONS: AB INITIO 
METHODS 

For the sake of simplicity, we may now consider a so-called "closed-shell" 
system made of N nuclei and 2n electrons in such a configuration that all the 
occupied MOs accommodate two electrons, one with ~ spin and the other one 
with ~ spin. For such a system, the Slater determinant writes: 

[(~,(l}(x(1) #,{2)o~(2).--(~,(2n)o~(2n)] 
1 [ ~, (I)[3(11 (~i (21~(2)"'" ~)l (21r/l~(2r/) [ 

[#o1;)~11) r .-" r 
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The value of the normalizing factor of this determinant has been calculated 
assuming that the MO r values are orthonormal, i.e.: 

yr162 =~,; =fl0 i=j  (9.19) 
i~aj 

where dv, represents dx, dy, dz,. 
This is an important condition which ensures orthonormality of the spin- 

orbitals ~g,, the spin functions cx and ~ being orthonormal on their own. 
The best MOs of our system will be given by using the variational principle, 

which is satisfied by any approximate solution ~g'(1,2,...2n)of the Schr6dinger 
equation. This principle states that the energy associated with the normalized 
approximate wavefunction ~P', expressed in the Dirac notation [20] as: 

E' = < ~ '  [ Hi ~ '  > (9.20) 

where H is the Hamiltonian defined by equation (9.10), and is an upper 
limit to the ground state energy Eo yielded by the exact solution of equation 
(9.12): 

E'>_E o ( 9 . 2 1 )  

In the case of an approximate function of determinantal type such as equation 
(9.18), the energy E' will depend upon the nature of the one-electron 
wavefunctions r and the best MOs will be obtained by requiring that the energy 
(9.20) is minimum, subject to the constraint that the functions ~; keep 
orthonormal. The two basic steps of the Hartree-Fock method [21, 22] are thus: 

�9 the derivation of total electronic energy E = < ~g I H [ ~  > using as �9 the 
Slater determinant (9.18} and H as the Hamiltonian (9.10), 

�9 the minimization of E under the imposed constraint (9.19). 

This leads to the well-known Hartree-Fock one-electron equations [2,5]: 

F(1) r e, r (9.22) 

where e, is the energy of orbital r and F, the Fock operator, is given by: 

F(1) = h(1)+ ~[2 / , (1 ) -  K~(1)] (9.23) 
j=l 

1 representing the spatial coordinates of electron 1. The one-electron operators 
of equation (9.23) are defined as: 

N h~ ~_~_~ Z~ e~ 
h(1) = - 8~---- ~ V, (9.24) 

v=l f l y  

If ] J;(1) r r  r r 
/'12 

(9. sl 



HARTREE-FOCK AND ROOTHAAN EQUATIONS: AB INITIO METHODS 2 7 5  

] K,(1) ~i(1)= ~ ; ( 2 ) ~  q~,(2)dv 2 ~,(1) 
r~2 

(9.26) 

h(1) is therefore made of the kinetic and nuclear energy operators for electron 
1, whereas J;(1) and K,(1) are the well-known Coulomb and exchange operators, 
respectively. These last two operators are responsible for interelectronic 
repulsion, but it is seen from equations (9.25)and (9 .26) that  electron 1 
interacts with electron 2 located at an average position in its MO ~;, not an 
instantaneous one as it should be; we will return to this important point later. 

A careful examination of equations (9.22)-(9.26)allows one to conclude that 
solving the Hartree-Fock equations is not as simple as it would seem at first 
sight. Indeed, instead of being an eigenvalue (r eigenvector (~;) system, 
equation (9.22) actually consists of coupled integro-differential equations 
where the q~ functions, which act as eigenfunctions, are included in the J, and 
K, operators. This means that these equations must  be solved using the 
iterative procedure depicted in the scheme of Figure 9.2 and known as the self- 
consistent field (SCF)method. 

In the SCF method, one starts from an initial guess made of trial 
functions ~/0~, i = 1,2,...n, which are used to calculate the integrals involved 
in the Coulomb and exchange operators of F '~, the Fock operator of iteration 
1. Then, the Hartree-Fock equations are solved, leading to a new set of MO 
~,~, which are subsequently used to construct the new Fock operator i ~~. 
The process is repeated until convergence test parameter 8, which may be 
defined as the maximum difference between the wavefunction values 
obtained in consecutive iterations, is smaller than a given criterion. 
Generally speaking, there are two problems associated with the SCF 
procedure in quantum chemistry: (i) in many pathological cases, such as 
open-shell systems (configurations with one or more MOs accommodating a 
single electron), convergence may be difficult to reach; (ii) the system of 
SCF equations has to be solved m times, which considerably increases the 
computational effort. 

For atoms, the Hartree-Fock equations may be solved rigorously by taking 
advantage of their spherical symmetry, which allows one to separate the 
variables. For molecules, however, this is no longer possible, and one generally 
uses the method proposed independently by Hall [23] and Roothaan [24], 
known as the linear combination of atomic orbitals (LCAO)approximation. In 
this method, the MO ~; are expanded over a basis set of atomic orbitals {X,} of 
dimension m: 

r l /  

= G x . ( 1 )  
(9.27) 

and the problem is now to determine the coefficients c~ of our system for a 
given AO basis {X~}. Using the variational method with the orthonormality 
constraint (9.19), Hall and Roothaan have shown that they are solutions of the 
equations: 
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INITIAL GUESS �9 

choice of trial ~i (0)-- 

[k ~ ' ,  --l ] 

l 
EVALUATION OF F (k) fi'om r  

k = k + l  
~ b  

RESOLUTION OF F(k)r (k) -- , i(k)r (k) 

i.e. calculation of r (k) and ci (k) 
. . . . .  

CALCULATION OF CONVERGENCE PARAMETER 

such as Max l~i(k)(1)-~i(k-l)(1) I = e 

f l O .  

t' 

6 < CONVERGENCE 
CRITERION 

I 
yes 

END OF CALCULATION �9 r (m) and E i (~)  

are finn solutions of the Hart ree-F~k equations 

Figure 9.2 Scheme 2. 

where: 

with: 

m 

v=l  

~t = 1,2,...m 

F = H  + G  
~v ~v ~v 

H,~ = y X, (1) h(1) Z~(1)dv, 

(9.28) 

(9.29) 

(9.30) 
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and: 

G v = Z P ~ [ <  ~tvlXp > - 1 / 2  < ~tXlvp >] (9.31) 

In expression (9.31), P~ is the first-order density matrix defined as" 

n 

Pxp = 2 x c~cpi 
i=1 

(9.321 

and < ~tv I ~.p > is a short-hand notation for the two-electron integral: 

< ~ v l ; k p  > = ##z~ll)z~(1) 
2 

e 

r,~ 
Zx (2)Z0(2)dv, dv, (9.33) 

In the Roothaan equations (9.28), e, is the one-electron energy of MO r and S,~ 
is the atomic overlap integral, defined as: 

S,~ = y Z,(1)Z~(1)dv~ (9.34) 

The relations (9.28) are the algebraic form of the Roothaan equations, whose 
matrix form is: 

FC = SCE (9.35) 

where F, C and S are m x m  matrices with elements F~v, c~ and S,v respectively, 
E being a diagonal matrix with elements e,. 

Solving the Roothaan equations (9.35} leads to a set of MOs {Oi} i = 1,...m; the 
ground state configuration is then obtained when the n lowest energy MOs 
each accommodate two electrons, the m - n  remaining ones being called 
virtual MOs.  

Since it involves a great number of matrix operations, for which computers 
are very well suited, the matrix form (9.35) of Roothaan equations is solved 
preferentially in computational chemistry programs. However, when solving 
equation (9.35), one is faced with two well known problems: 

1. As F,~ depends upon the solutions through the density matrix P~p, the SCF 
procedure must  be used (the scheme in Figure 9.2). 

2. The number of < ~tv I Xp > integrals to be evaluated is proportional to m', 
which places serious limitations to the size of the basis sets of practical 
u s e .  

It is necessary here to make a fundamental distinction between the LCAO- 
MO methods, which attempt to solve the Roothaan equations (9.35): in the ab 
initio approach (i.e. literally, from first principles), these equations are solved 
for a given basis set without further approximations. On the contrary, the 
semi-empirical  schemes introduce in the F,~ matrix elements (equation (9.29)) 
both simplifying approximations and adjustable parameters, so as to lead to 
acceptable agreement with experimental results. The semi-empirical methods 
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will be discussed later on in this chapter, and we turn now to the ab initio 
techniques. 

The choice of an adequate AO basis set {~,} is an important problem in ab 
mi t io  quantum chemistry. It is not possible to develop this question at length 
here, and the reader should refer to recent reviews, such as that published 
recently by Feller and Davidson [25]. Let us just mention that, for practical 
reasons, the atomic basis functions used in ab initio calculations are generally 
of the Gaussian type, i.e. they are characterized by a drop-off as exp(-~r2), 
where ~ (zeta)is a constant called the orbital exponent [8]. Atomic Gaussian 
functions, which were introduced by Boys [26], are generally defined in such a 
way as to correspond to the usual angular symmetries of hydrogen-like atomic 
orbitals [2], i.e. one may label them as Is, 2s, 2p~, 2p, 2p~, etc. However, as the 
radial behaviour of Gaussian functions leads to a poor representation of the 
actual electron density of atoms (no cusp at the origin, drop-off different from 
the exp(-~r) dependence of hydrogen-like orbitals), one generally uses a (so- 
called contracted) linear combination of Gaussian functions, with fixed 
coefficients, as the expression of each basis function X,. 

It is clear that the maximum accuracy of the Roothaan method, the so-called 
Hartree-Fock limit, is achieved with a basis set of infinite dimension, i.e. m = 
o o  in equation (9.27). As computers have not yet been designed to solve matrix 
equations of this dimension, the choice of basis sets in ab initio calculations 
is, as summarized by Hehre et al. [8], "a compromise between accuracy and 
efficiency." Roughly speaking, depending upon both the size of the molecule 
and the computational resources available, three different types of AO basis 
sets can be used in ab initio quantum chemistry: 

o 

~ 

Minimal  basis sets, comprising one contracted Gaussian function [single 
zeta} for each occupied AO in the separated-atom limit ground state of the 
molecule under study. A typical example is the popular STO-3G basis set 
of Hehre et al. [27], where each AO of the minimal basis set is made of a 
contraction of three individual Gaussian functions. For the hydrogen 
fluoride (HF} system, the use of such a basis leads to a dimension (m)of 6: 
ls, 2s, 2p,, 2p~ and 2p~ AOs on fluorine and ls AO on hydrogen. 
Multiple-zeta basis sets, which are characterized by the fact that two or 
more contracted Gaussian functions, instead of one, are used to describe 
the AOs of the minimal basis set. The double-zeta basis set, for example, 
comprises twice as many basis functions as the minimal one, the triple- 
zeta three times as many, etc. Such basis sets are much more flexible than 
minimal ones, and generally lead to a significant improvement in the 
description of the electronic structure of molecular systems. However, as 
core electrons are little affected by the formation of chemical bonds, in 
most cases it is not necessary to use a multiple-zeta description of their 
AOs and a good compromise is found in split-valence basis sets. In this 
case, a single contracted function corresponds to each core AO, whereas 
double-zeta functions are used for each valence AO. A good example is 
found in the 6-31G basis of Hehre et al. [28], where a contraction of six 
primitive Gaussians is used for core AOs, the valence AOs being described 
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by contracted functions made of three and one Gaussians, respectively. For 
the HF molecule in the 6-31G basis set, the value of m is 11:1 s, 2s, 2s', 2px, 
2px', 2p~, 2p~', 2pz, 2pz' AOs on fluorine, 1 s and 1 s' AOs on hydrogen. 

3. Polarized basis sets, which differ from the previous ones by the addition of 
functions corresponding to AOs with higher angular quantum number 1 
than that actually found in the ground state configurations of the 
constituent atoms. Such functions are known as polarization functions 
because they allow us to describe charge polarization effects resulting from 
the internal molecular electric fields. The 6-31G* basis set of Hariharan 
and Pople [29] is among the simplest polarized basis sets: it is constructed 
by the addition of six d-type Gaussian primitives (expressed in Cartesian 
coordinates, there are six second-order Gaussian functions: d~x, d,, d~, d,, 
dxz and d , ) t o  the split-valence 6-31G description of each atom ranging 
from Li to C1. For the HF molecule in the 6-31G* basis set, m amounts 
now to 17: Is, 2s, 2s', 2px, 2pS, 2p~, 2p~', 2pz, 2pz', 3dx~, 3d,, 3dzz, 3dx, 3dx~, 3dyz 
AOs on fluorine, l s and is'  AOs on hydrogen. It is seen that in view of the 
m 4 dependence of the number of two-electron integrals to be evaluated, the 
use of polarized basis sets involves a major computational effort for 
molecules containing more than 10-15 heavy (non-hydrogen) atoms. 

It is not possible to conclude this section without mentioning the problem 
of electron correlation and the usual ways in which to solve it, at least 
partially, by resorting to post-Hartree-Fock treatments. We have previously 
pointed out that the Coulomb (equation (9.25))and exchange (equation (9.26)} 
operators of the Hartree-Fock equations involve the average, not 
instantaneous as they should, repulsive interactions between electron pairs. 
Actually, this deficiency is due to the independent electron approximation, 
equation (9.13), and consequently to the single determinantal wavefunction, 
equation (9.16), postulated as the solution for the ground state configuration of 
the n electron system. Rigorously, the correlation energy Ec is defined as the 
difference between the true, non-relativistic energy Eo of the system and the 
energy E.~ of the Hartree-Fock wavefunction [30]: 

E = E ~ - Eh~ (9.36) 

As the variational principle states that Eo < Eh~, it follows that Ec is always 
negative. Even though in practice Ec amounts typically to only 1% of E~, its 
absolute value is large due to the order of magnitude of E.~. As an example, the 
Hartree-Fock energy of benzene is roughly-231 hartrees, which means that 
the correlation energy of this molecule is of the order o f -1450  kcal/mol (1 
hartree = 627.5 kcal/mol)! However, it is not always necessary to go beyond the 
Hartree-Fock treatment when using the ab initio model: geometries (bond 
distances in error by 0.02-0.03 A and bond angles by 5 ~ and a large number of 
electronic properties (charge densities, electrostatic potentials, ionization 
energies of organic molecules, etc.) are generally reasonably well predicted at 
the Hartree-Fock (commonly denoted SCF) level, at least with an accuracy 
good enough for many CAMD applications. Clearly, post-Hartree-Fock 
treatments are much more demanding in terms of computer time than the SCF 
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ones and, therefore, they should be reserved for cases of absolute necessity, 
such as the prediction of accurate spectroscopic properties or of chemical 
reaction paths involving bond breaking or making, etc. [3, 8, 9]. 

Broadly speaking, there are two categories of post-Hartree-Fock treatments, 
known as configuration interaction (CI) and multi-body perturbation methods 
respectively. In the CI approach, the molecular n-electron wavefunction is 
written as a sum of Slater determinants ~ :  

q'(1, 2,...n)= E C l  q'g(1,2,...n) (9.37) 
! 

where, in addition to the ground-state configuration (equation (9.16)), the 
Slater determinants q'! correspond to excited states obtained by promoting 
electrons from occupied to virtual MOs ~,. The unknown coefficients C, are 
determined variationally, i.e. by minimizing the energy Ect calculated as: 

Ec, = < ~lHIq '  > (9.38) 

where q~ is the multideterminantal wave/unction given by equation (9.3 7) and 
H the electronic Hamiltonian of equation (9.10). The selection of excited 
configurations to be introduced in the variational wave/unction (9.37) has a 
direct influence on the amount of correlation energy which can be recovered 
by this treatment. A standard choice, known as CISD (CI with singles and 
doubles}, consists of introducing into the summation of equation (9.37) all the 
configurations differing from the ground-state by single and double excitations 
to virtual MOs, which allows us in principle to recover more than 90% of the 
correlation energy one would obtain by using the untruncated expansion (9.3 7) 
[31, 32]. However, due to uncompleteness of the one-electron (AO)basis set, 
the correlation energy recovered by a CISD calculation is usually much 
smaller than 90% of E~ because equation (9.36) assumes the use of the 
Hartree-Fock limit wave/unction to evaluate correlation effects {see the H~O 
example presented below!). The main problems associated with CI 
calculations are their cost, which may be prohibitive {the number of possible 
excited configurations increases very rapidly with both the number of 
electrons and the quality of the basis set), and the fact that they are not size- 
consistent, i.e. correlation energies they lead to are not proportional, even 
roughly, to the size of the molecule. 

Another problem connected with post-Hartree-Fock treatments of CI type is 
their slow convergence as a function of the number of configuration state 
functions (CSF), i.e. of excited state configurations taken in the calculation. 
This is illustrated by Figure 9.3, which displays the total energies of the H~O 
molecule obtained by Lee et al. [32] from various ab init io SCF and post-SCF 
calculations. The dramatic increase of the number of CSFs as a function of the 
degree of excitation is clearly seen {i.e. when going from CISD to CISDTQ), 
together with the small energy lowering resulting from introduction of triply 
and quadruply excited states. It can be easily deduced from Figure 9.3 that the 
CISD calculation performed using the DZ and DZP basis sets allow recovery of 
only 34% and 53% respectively, of the correlation energy. Actually, a very 
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CISD/DZ (177 CSFs) 

CISD/DZP (926 CSFS) 
CISDTQ/DZP (151248 CSFs) 

Eo 

Figure 9.3 Total energy of the H20 molecule calculated using different ab mitio 
procedures [3, 32] and compared with the Eo value of equation (9.36). SZ = single zeta, 
DZ = double zeta + polarization basis sets, CISD = CI including single and double 
excitations, CISDTQ -- CISD including triple and quadruple excitations. 

large basis set including several polarization functions is required to obtain, at 
the CISD level, a total energy for the H~O molecule recovering 86% of the 
exact correlation energy, i.e. of the difference between Eo and E~ [33]. 

Multi-body perturbation methods provide an interesting alternative to post- 
Hartree-Fock t rea tments  of the CI type. Indeed, as seen in the example 
reported above, convergence of CI expansions is slow and a very large number  
of configurations has to be used for an accurate evaluation of the correlation 
energy [34]. It was therefore of interest to devise more economical  strategies to 
recover the largest fraction of Eo. In the Moller-Plesset  (MP)[35] formulat ion of 
the mult i -body perturbation theory (MBPT), which is the most  popular version 
of MBPT, the Hartree-Fock operator is extracted from the Hamil tonian  of 
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equation (9.10) and the remaining part is treated as a perturbation [3, 81. For a 
given AO basis set, the exact ground state wavefunction and energy can then 
be expressed using perturbation theory, i.e. by a perturbation expansion up to 
infinite order. Practically, the expansion is truncated to 2nd, 3rd or 4th order, 
which leads to the well known MP2, MP3 or MP4 models. It can be shown that 
the MP2 total energy is made of the Hartree-Fock energy for the ground state 
of our system plus a second-order contribution resulting from all the double 
excitations to the virtual MOs [8]. Again, only double excitations contribute to 
the MP3 total energy, whereas single, triple and quadruple ones lead to the 
MP4 correction. 

Practically, MP methods are convenient as they require less computational 
effort than conventional CI. For example, the CPU time needed by a MP2 
calculation is generally larger than a SCF one by a factor of 2.0-4.0 only. In 
addition, MP methods have the advantage of being size-consistent, and MP2 
has proven to be very efficient for accurate structural predictions [8]. However, 
the MP methods present the limitations of: (i) being not variational (it is not 
unusual that the MP2 energy correction is larger in absolute value than the 
correlation energy); and (ii) not being able to calculate excited states. 

As a conclusion, ab initio quantum chemical methods are undoubtedly useful 
tools in CAMD, provided the size of the target compounds enables one to perform 
"good quality" and relevant calculations (choice of a sufficiently large basis set 
and possibly post-SCF treatment). Referring to two popular application fields of 
CAMD, namely pharmacophores and new materials, frequently these conditions 
are not fulfilled, and the users have to turn to simpler and more approximate 
models. In addition, ab initio methods are too demanding in computational 
resources to be used for interactive (or pseudo-interactive) molecular graphics 
applications such as the building of structural models or the evaluation of reactivity 
indices. However, these models are indispensable and do bring an invaluable 
contribution when: results of chemical accuracy are needed for small molecules 
or model fragments, or new force field parameters have to be determined for 
molecular mechanics or dynamics investigations. Significant progresses have 
recently been achieved in post-Hartree-Fock treatments, resulting in performing 
methods such as coupled-cluster (CC), multi-configuration SCF (MCSCF), etc. For 
a good review, the reader should refer, for instance, to R.J. Bartlett and J.E Stanton, 
in Reviews in Computational Chemistry, vol 5, K.B. Lipkowitz and D.B. Boyd, 
(eds.), VCH Publishers, New York, 1994; p 65. For the reasons mentioned in this 
Chapter, these methods are, broadly speaking, still beyond the scope of standard 
CAME) applications and they need no further treatment here. 

9.3 SEMI-EMPIRICAL METHODS 

For the obvious reason of the lack of adequate computing facilities required by 
accurate quantum chemical models, approximate semi-empirical methods 
have older roots in quantum chemistry than ab initio ones. Historically, the 
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first of them is the qualitative n-electron Hfickel MO (HMO) method, which 
traces back to the early 1930s [36], i.e. 20 years before Hall and Roothaan 
developed the LCAO-SCF model! Actually, the HMO model rests on a 
phenomenological Hamiltonian describing in a purely empirical way the 
interactions between n electrons of planar unsaturated molecules [3 7]. In spite 
of its limitations, the model is able to rationalize many properties of organic 
molecules, and it is not unusual, even nowadays, to see HMO calculations 
reported in prestigious journals [38, 39]! 

As pointed out by Pople and Beveridge [40], semi-empirical methods may be 
conceived from two basically different points of view: (i) construction of a 
purely empirical Hamiltonian, as in the HMO and its successor, the extended 
H~ickel (EH) MO [41] models, without further justification than reproducing 
experimental results; and (ii) introduction of physical approximations and 
empirical parameters as well into the F Hamiltonian matrix of the Roothaan 
equations (9.35). As both approaches have led to the development of successful 
methods, they will be briefly presented and their respective merits outlined. 

Semi-empirical methods may be defined as approximate procedures which 
rely on a set of empirical parameters to calculate the wavefunctions of valence 
electrons only. As compared with ab initio methods, which solve rigourously 
the Hall-Roothaan equations in a given basis set, semi-empirical methods are 
therefore based on the use of approximate effective Hamiltonians acting on the 
valence space of the molecule, the inner shell electrons being treated with the 
nucleus as an unpolarizable core [42]. 

9.3.1 Extended HLickel method 

In the Hiickel theory [36], the MOs of unsaturated organic molecules are built 
from n AOs of the carbon skeleton, using a one-electron Hamiltonian 
(equation (9.30))whose matrix elements are defined as: 

H =o~ 

H =0 
~ v  

if ~t and v belong to bound atoms 

otherwise 
19.39) 
19.40) 

where a and 13, the Coulomb and resonance integrals respectively, are 
determined empirically by fitting the results to observed data. In addition, the 
electron-repulsion matrix elements G~ (equation (9.31 )) are neglected, and the 
overlap integrals S~ (equation (9.34)) are taken such as S~ = 6~. 

The resulting linear equations: 

m 

E ( H - e i 6 v ) c v i - 0  g = l , 2 , . . . m  19.41) 
v 

where m is the number of carbon atoms, are then solved using the HMO 
determinantal equation: 
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J/-/ -e ,  8 I=0 [9.42} 

In addition to being useful for understanding the gross features of chemical 
bonding, especially its topological character, the HMO method has some 
success in calculating properties such as oxidation-reduction potentials, 
ionization energies and hyperfine splittings of hydrocarbon radicals [37-39, 
43]. However, being seriously limited to specific classes of molecules and 
properties, the method is not general enough to be an efficient tool in most 
CAMD applications. The next step, suggested by Hoffmann and known as the 
ex tended  H~cke l  m e t h o d  [41 ], was therefore to extend the HMO formalism to 
all the valence electrons. The features of the EH method are the following: 

The AO basis set {Z,} is made of Slater-type functions [44], characterized by 
a drop-off as exp(-~r), spanning the valence shell of all the atoms of the 
molecule. As an example, the AO basis set of an EH calculation performed 
on ferrocene, Fe(CsHsh, is made of the following functions: 

Fe : 3d~, 3d~_~, 3d~. 3d.., 3d., 4s, 4p~, 4p.  4p, 
each C atom : 2s, 2p., 2p~, 2p~ 
each H atom : ls 

i.e. it is of dimension 59. 
2. Whereas electron repulsion matrix elements G,~ (equation (9.31)) are still 

neglected, the overlap integrals S,~ (equation (9.34)) are all retained and 
calculated using the Slater basis orbitals. 

3. The matrix elements of the one-electron Hamiltonian (equation (9.30))are 
defined as: 

, 

H,~ = -I~ (9.43) 

H = 0.5K(H~ + H~)S,~ ~t ~ v (9.44) 

where I~ is the valence state ionization energy (VSIE) of orbital It, deduced 
from atomic spectroscopic data, and K is the Wolfsberg-Helmholz 
constant [45], usually taken as 1.75. Contrary to the HMO model, all non- 
diagonal H~ matrix elements are retained and calculated using equation 
(9.44), whether or not ~t and v belong to bound atoms. 
Using this approximated Hamiltonian, the matrix form of the EH equations: 

HC = SCE (9.45) 

is then solved in a way similar to the Roothaan equations (9.35). However, 
as H does not depend upon the solutions c~, solving the system (9.45) does 
not require the SCF procedure. 

As simple as it is, the EH method has proven very successful for analysing 
and interpreting the ground state properties of organic, organometallic and 
inorganic compounds [46-48]. It is still very much in use today in many CAMD 
applications, as it generally leads to electronic structures enabling the user to 
assess and discuss the reactivity of the compounds under study. Another 
advantage of the EH method is its versatility, which allows it to be used for any 
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kind of compounds comprising practically any element of the periodic table. 
Indeed, in addition to the K constant, the only parameters of the model are the 
exponents of the Slater functions and the VSIE values, both of which have been 
determined for all the atoms in their standard oxidation states. 

However, the model suffers from two well known deficiencies, which have 
been partly overcome by various techniques: 

. 

For polar and ionic compounds, it generally leads to overestimated atomic 
charges, unless one uses charge-dependent VSIEs, as suggested by Basch et  
al. in their self-consistent charge and configuration (SCCC)procedure [49]. 
In particular, the use of the SCCC technique is indispensable for transition 
metal complexes. In these conditions, the EH method leads in general to a 
coherent description of the gross features of electronic structures, as 
exemplified by detailed comparisons with more elaborate models [50, 51]. 
The approximate expression {9.44), employed for non-diagonal matrix 
elements of EH Harniltonian, accounts essentially for covalent bonding, 
and no provision is made for electrostatic interactions such as core-core 
repulsions. Whereas this deficiency has little influence on the calculated 
electronic structures, it is of dramatic importance for potential energy 
surfaces, with the result that it leads in many cases to atomic collapse, i.e. 
to continuously decreasing total energies when bond distances tend to 
vanish. To overcome this deficiency, Anderson and Hoffmann have shown 
that an approximate two-body repulsive energy can be added to the EH 
binding energy, resulting in a reasonable behaviour of the modified EH 
(MEH) model for the prediction of geometries [52]. More recently, 
Calzaferri et  al. have shown that the MEH model can be improved by 
introducing a parametrized and distance-dependent Wolfsberg-Helmholz 
K constant (equation (9.44))[53], and Table 9.1 presents some results that 
we have recently obtained for organometallics using this simple 
technique. It is seen that the calculated geometries compare reasonably 

Table 9.1 Comparison between MEH and experimental bond distances (./~) of some 
transition metal carbonyl complexes. 

Bond' V(CO), CriCO), FeiCO)s NiiCO), 

M-C~q(calc) 1.890 1.856 1.834 1.805 
M-C~q(exp) 2.008 1.910 1.833 1.838 
M-C.~(calc) 1.806 
M-C.~(exp) 1.810 
C-Oeq(calc) 1.149 1.146 1.150 1.154 
C-O oq(exp) 1.139 1.141 1.153 1.140 
C-O~(calc) 1.140 
C-O~(exp) 1.153 
RRMS b 0.051 0.024 0.005 0.017 

aeq -- equatorial; ax - axial. The distinction between equatorial and axial ligands 
applies only to Fe(CO)s. 
bRRMS - relative root mean square of the error on calculated parameters. 
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well with the experimental values, which suggests that the EH model can 
be used for quantitative or semi-quantitative predictions of both potential 
energy surfaces and chemical reactivities in CAMD applications. In 
Chapter 10, we present and discuss a reaction potentials technique 
recently developed along these lines [54]. 

9.3.2 CNDO method 

Historically, the Complete Neglect of Differential Overlap (CNDO)method 
was the first one attempting to solve in an approximate way the 
Roothaan-Hall equations [55, 56]. Indeed, contrasting with the HMO and 
EHMO models, it is the first member of the series of semi-empirical models 
referred to in the beginning of this section as being based on the introduction 
of physical approximations and empirical parameters into the F Hamiltonian 
matrix of the Roothaan equations (9.35). 

As in all the semi-empirical techniques reviewed in this section, the AO 
basis set used in CNDO is built over Slater orbitals spanning the valence shell 
of the atoms present in the molecule. However, as opposed to the EH model, 
the CNDO method and its successors have in general not been parametrized 
for transition metal complexes, and consequently their AO basis set does not 
include d orbitals, a few cases excepted, where they may be used as 
polarization functions. 

The sequence of approximations leading to the CNDO scheme will be briefly 
reviewed as it provides the necessary basis to delineate its limitations and to 
understand the reasons of the improvements brought about by its successors. 

1. The zero-differential overlap (ZDO)approximation [57] is used: 

)~(1))~(1) = 0 if ~t ~ v (9.46) 

for any position of electron 1. This entails, of course: 

(9.4z) 

which in turn leads to a simplified form of the Roothaan equations (9.35): 

F C = C E (9.48) 

In addition, the ZDO approximation leads to a drastic reduction in the 
number of two-electron integrals {equation (9.33)): 

< ~tv I ~.la > = < ~ I )~. > 8 ~o [9.49) 

which means that all three- and four-centre two-electron integrals are 
neglected. 
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, To keep rotational invariance, i.e. independence of the CNDO results upon 
the choice of coordinate system, all two centre two-electron integrals 
involving AOs on a given pair of a toms are taken as equal, i.e." 

< g g l k k  > = 7,~ for any AO g belonging to A (9.50) 
and any AO k belonging to B 

Approximations (1) and (2)were concerned with  two-electron matr ix elements 
G~. Let us turn now to approximations (3) and (4), which deal wi th  one- 
electron matr ix elements  H,~. 

3. The H~ matr ix elements  (equation (9.30))may be written: 

H =< g l h  Iv > (9.51) 

where h is the Hamil tonian (9.24). One therefore has: 

H,~ = < g - 8/t 'm V, V B v > (9.52) 
B 

the summat ion  running over all the atoms of the molecule, VB being 
defined as: 

V,~ = ZBe2 19.53) 
r i b  

. 

Assuming that the AO g belongs to a tom A, one may write: 

H ~ = < g - 8 1 t ~ m V l ~ - V ^  v > -  < g l V  BIv> 
B ~ A  

~, , , , y ,  �9 

= U, v - 2  < g IVB Iv > 
B ~ A  

(9.54) 

(9.ss) 

Similar to the t rea tment  of < gg I kk >, approximation (3) then amounts  to 
assuming: 

<glV B Iv>= V,~ ~,,, {9.56)  

which means that  all three centre nuclear at traction integrals are 
neglected and that  two centre ones are set equal for a given pair of atoms A 
and B. 
Non-diagonal matr ix  elements  H~ (equation (9.51)}, wi th  AOs g and v 
belonging to atoms A and B respectively, are approximated using an 
expression analogous to that  of the EH model  (equation (9.44)): 

= s 19.571 

where ~,~ is a parameter  depending only upon the nature of a toms A and B. 
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The effect of approximations (1)-(4) is to reduce the matrix elements of the 
Fock operator (equation (9.48)) to their CNDO expressions: 

F.. =U~,~, +(P~-I/2P~)y~ + E(PBB y ~  - V~)  
B,A 

on atom A (9.58) 

F = 1 3 ~ S  - 1 / 2 P  1~ ~tonatomA 
v on atom B (9.59) 

where: 

P~ = E P~ (9.60) 

with P~ given by equation (9.32J. 
In the CNDO method, the following parameters therefore have to be 

assigned values before calculations may be performed: U~, y~, V,~ and [~. It is 
then relatively easy to solve the CNDO matrix equation (9.48), though the SCF 
procedure must be used in view of the dependence of the Hamiltonian matrix 
elements upon solutions c~ via the first order density matrix P. 

For the calculation of potential energy surfaces {equation {9.111), a standard 
core-core repulsive contribution Vo~ analogous to equation (9.7): 

1 ~ Z^ZBe' 
19.61) 

is added to the CNDO total electronic energy. In equation [9.61), the 
summations run on the cores of the molecule, each of them having a charge Z^, 
and R~ being the distance between A and B. 

Several parametrizations (i.e. several coherent sets of values for the 
aforementioned parameters) have been proposed for the CNDO scheme. The 
most successful one is undoubtedly the so-called CNDO/2 version, which 
leads in general to satisfactory geometries and atomic charges [40, 58]. 
However, in view of the large number of two-electron integrals neglected and 
the rather small quantity of parameters to fit on experimental or ab mitio data, 
the CNDO/2 method is not elaborate enough to be able to yield reliable results 
for a whole range of organic compounds. It has therefore been superseded in 
CAMD applications by its INDO- or NDDO-type successors. 

9.3.3 INDO method 

One of the main deflciences in the CNDO formalism lies in the impossibility 
of reproducing energy splittings between different spin states arising from the 
same electronic configuration. This is due to the ZDO approximation, 
according to which the one centre exchange integrals of < gtv I ~tv > type 
responsible for these energy splittings are neglected. The next step is therefore 
to retain monoatomic differential overlap in one centre two-electron integrals, 
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which leads to the so-called Intermediate Neglect of Differential Overlap 
(INDO) method [59]. Actually, in a basis set made of pure s and p AOs (no 
hybrids), the only non-vanishing, one centre, two-electron integrals are 
< lap I ~t~t > and < gp I vv >, both of which were already included in the CNDO 
scheme, and < pv I ~tv >, which is the only new type of integral to be introduced 
in the INDO method. Consequently, the Fock matrix elements are written as 
follows in the INDO formalism: 

F~. = U.. + E P~.~.[< lal.t I Xk > -1/2 < .3.1.3. >] 
~A 

+~(PBB Ya - Va) p on atom A (9.62) 
B~A 

F = P [1.5 < pv ] ~tv > -0.5 < ~tp ] vv >] p and v both on atom A (9.63) 

whereas the two -centre non-diagonal F~v matrix element is the same as in 
CNDO. 

Generally, for INDO one uses the same parametrization as that of CNDO/2 
and, as the two methods are closely related, they lead to very similar results for 
closed-shell molecules [40]. For open-shell systems, however, which 
correspond to configurations exhibiting one or more singly occupied MOs, 
INDO results are significantly better due to the improved description of the 
different interactions taking place between electrons with the same or 
opposite spins. 

It is worthwhile here briefly commenting on the different strategies which 
have been adopted to parametrize a given semi-empirical model such as 
INDO. In both CNDO/2 and INDO, the school of Pople has tried to optimize 
a set of parameters so as to reproduce the results of minimum basis set ab 
initio SCF calculations. Indeed, these semi-empirical methods attempt to 
solve in an approximate way the Hall-Roothaan equations, and it is natural, 
according to the school of Pople, to try to find optimum values of the 
parameters which would more or less compensate for the approximations 
made [i.e. for the neglect of a large number of one- and two-electron integralsl, 
so that finally, for a given set of molecules, the semi-empirical and ab initio 
results will be as close one another as possible. This approach, however, has 
been criticized by Dewar, who argued that the parametrization should be 
primarily directed towards agreement with experimental data [60]. Indeed, as 
we have seen previously in this chapter, minimum basis set ab initio 
calculations present several deficiencies, the most serious one consisting of 
the neglect of correlation effects, and Dewar is probably right pointing out 
that a good semi-empirical model should try to overcome them by introducing 
part of the correlation into the effective Hamiltonian used [42]. Starting from 
these principles, Dewar and his group have developed, in the last 20 years, a 
whole range of semi-empirical models which are now very useful tools in 
CAMD applications to organic chemistry. In the last part of this section, we 
are going to review the most popular of them, namely MINDO/3, MNDO and 
AM1. 
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9.3.4 MINDO method 

In his series of Modified Intermediate Neglect of Differential Overlap 
(MINDO) semi-empirical methods, among which the most successful one is 
MINDO/3 [61], Dewar has used the INDO Hamiltonian developed by Pople 
{equations {9.62) and {9.63}} and, at this level of approximation, has performed 
an extensive re-parametrization of the various terms in order to have at hand a 
general model applicable to the calculation of the largest possible number of 
properties. In addition, this effort also involved the extension of the 
parametrization to a large number of elements {without transition metals, 
still}, so as to allow the study of large classes of organic compounds. 

It is not our purpose here to describe in detail the modifications brought by 
Bingham et al. [61] in MINDO/3 to the various terms of the Hamihonian 
matrix elements {equations {9.62} and (9.63)), especially as several good reviews 
have appeared recently [7, 34, 42, 62]. Let us just mention the following 
differences with respect to INDO: 

1. Instead of being taken from atomic spectra, the U~ integrals are treated as 
adjustable parameters. 

2. The two-electron integrals ~,~ are no longer calculated using s AOs, but 
approximated using the distance-dependent formula suggested previously 
by Dewar and Sabelli [63]. 

3. Instead of being an average of atomic values, the ~,~ parameter is 
characteristic of the pair of atoms A-B. 

4. The ~ exponents of the Slater AOs are all taken as adjustable parameters. 
5. The core-core repulsive energy V., {equation 9.61) is made a function of 

electron-electron repulsion and "true" core-core repulsion with a 
parameter a~ characteristic of the pair A-B. 

All the parameters of the MINDO/3 method were optimized by a least- 
squares fit to experimental heats of formation and geometries of a selected set 
of organic molecules. To illustrate the computational effort involved by this 
fitting, let us just quote that the original parametrization of 10 atoms required 
to optimize 159 parameters in MINDO/3, as compared with 30 parameters in 
INDO! Some well known pitfalls apart [34, 62], the performance of the 
MINDO/3 model is good, even for properties or types of compounds not used 
in the parametrization. As an example, the calculated heats of formation of a 
series of closed-shell molecules containing C, O, N and H atoms show an 
average error of 11 kcal/mol [62]. In addition, the geometries of hydrocarbons 
are in good agreement with experiment, the errors on bond lengths being 
generally less than 0.02 A and on bond angles less than 4" [34]. These results, 
together with the small computational effort as compared with ab init io 
calculations [generally by a factor of less than 1/1000), undoubtedly help in 
understanding the popularity of MINDO/3 in CAMD applications. However, 
some caution is required, broadly speaking, for types of compounds or 
properties where few, if any, MINDO/3 results are available. In these cases, 
patient comparisons and calibrations of the model are indispensable for 
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assessing the validity of the approach and estimating an error bar on the 
calculated structures and properties. 

9.3.5 MNDO method 

In view of the very elaborate parametrization of MINDO/3, Dewar and Thiel 
soon realized that further improvement of the semi-empirical techniques 
could only be achieved by working at a reduced level of approximation [64], 
that is by starting from the Neglect of Diatomic Differential Overlap (NDDO) 
scheme proposed in 1965 by Pople et al. [55]. Indeed, in both CNDO and 
INDO models, the repulsion between lone-pair electrons located on adjacent 
atoms, such as in hydrazine, is not taken into account, and this important 
effect can probably not be entirely compensated for by a judicious choice of 
empirical parameters [62]. The next less approximate level of theory is 
therefore the NDDO scheme, in which the ZDO approximation is applied 
only to orbitals located on different atoms, i.e. equation (9.46) is modified in 
such a way: 

X~(1] X~(1)= 0 if p and v belong to different atoms (9.64) 

The NDDO approximation entails that integrals of < gtv I kp > type are only 
neglected if p and v, or k and p, belong to different atoms. One has to realize, 
however, that this improvement in the treatment of two-electron integrals 
induces in turn a significant increase of the computational effort, as it raises 
the number of two-electron two-centre integrals by a factor of 100 for each pair 
of non-hydrogen atoms in the molecule [62]. In the NDDO formalism, the 
Fock matrix elements write as follows: 

F~ = H~. + E P~[< gtla I kk > -1/2 < pk I gtK >] + 

+EEE;  p o n  a t o m  A 
B oeB aeB 

(9.65) 

F~ = H~v + 1/2 P~[3 < ~tv I pv > - < g~t I vv >] + 

+ E E E P ~  < laV I Ocs > p and v both on atom A 
B ogB aeB 

(9.66) 

F~ = H~ - I/Z E E P~ < ~,  I vP > 
k~A peB 

p on atom A 
v on atom B (9.67) 

the summation on B in equations [9.65} and (9.66)running over all the atoms 
different from A in the molecule. 

As was the case for MINDO/3, Dewar and his group have worked out a very 
elaborate parametrization of the NDDO Hamiltonian (equations [9.65)-(9.67)), 
which gave rise to the so-called modified NDDO [MNDO) scheme. In this 
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latter model, all the parameters already present in MINDO/3 are treated 
similarly, except for the ct,~ and ~AB expressions which are taken as averages 
over atomic parameters instead of being characteristic of the various pairs AB. 
The additional two-electron two centre integrals are evaluated using classical 
expansions in terms of semi-empirical multipole-multipole interactions [64]. 
All the MNDO parameters were optimized for a given set of standard 
molecules so as to reproduce by the calculation experimental heats of 
formation, dipole moments, ionization energies and molecular geometries. 

The MNDO model generally leads to good results for a vast number of 
organic molecules and their properties. When comparing with MINDO/3, the 
absolute values of the average errors of heats of formation, structural 
parameters, etc., are uniformly smaller by a factor of about 2 [65]. This has 
undoubtedly contributed to the popularity of the MNDO model, which has 
been, and still is, largely used in numerous CAMD applications. In addition to 
being a generally reliable semi-empirical model, MNDO has been the subject 
of extensive programming effort with introduction into the MOPAC [66] or 
AMPAC [67] packages of powerful geometry optimizers (gradient 
mimmizations) and calculation of properties such as vibrational frequencies 
[61]. For small to medium size molecules, typically containing up to 10-15 
atoms, it leads to CPU times for geometry optimizations of the order of 1 hour 
on modern workstations, which allows one to run these calculations as batch 
background jobs while performing standard modelling or graphics 
applications. 

9.3.6 AM1 and PM3 methods 

In spite of the important effort made towards an optimum parametrization of 
MNDO, some deficiencies remain, such as an overestimation of the repulsions 
between non-bonded atoms [62-68], which represents a serious limitation for 
the study of hydrogen-bonded systems. To overcome this problem, Dewar et 
al. have suggested including additional terms in the expression of core-core 
repulsive energy, while keeping all the MNDO parameters unchanged. This 
led to the so-called Austin Model 1 (AM1)method [68], which represents a 
significant improvement over MNDO, the mean absolute errors of practically 
all calculated properties being reduced and the model being able to treat 
adequately weakly bonded systems. 

Using a slightly different approach from that of Dewar, Stewart has in 
parallel performed a complete re-parametrization of MNDO, with a core-core 
repulsion term similar to that of AM1, which he called Parametric Method 
Number 3 {PM3)[69]. To this end, he has used an automatic procedure to 
optimize the parameters [70], which is a promising tool for the development of 
new semi-empirical techniques. The results obtained using PM3 are still 
rather scarce, and it is difficult to make a clear assessment of its performance. 
However, taken as a whole, it should not be very different to that of AM1, and 
the reader should refer to recent reviews in order to find more detailed 
information [13, 62]. 
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As a conclusion, let us mention that it is very fortunate that all the Dewar 
group methods are included in large packages such as MOPAC or AMPAC, as 
they enable the CAMD user to rapidly test the different models for a given 
series of molecules, for which experimental data are available, and then to 
select the best one for the application to be performed. It is therefore not an 
overstatement to assert that these packages today represent an important tool 
to rationalize the properties of organic molecules and, consequently, to carry 
out CAMD applications requiring their prediction at a quantitative level. 

9.4 DENSITY FUNCTIONAL METHODS 

Density functional methods are generally considered as a valuable alternative 
to the traditional ab initio quantum chemical model. Indeed, they are in 
principle also based on a parameter free theory, i.e. they attempt to find 
solutions "from first principles" to the SCF mean-field model of electronic 
structure, while treating the electron correlation problem differently from the 
post-Hartree-Fock techniques seen in section 9.2. Together with an 
approximate (local)expression of the exchange operator, this leads to a new set 
of one-electron equations, the solution of which involves a substantial 
reduction of computational effort as compared with Hartree-Fock. 
Consequently, density functional methods can be advantageously applied to 
large systems, such as clusters of transition metals or organometallic 
complexes. 

As for the other quantum chemical models previously seen, several good 
textbooks and reviews of the density functional methodology have appeared 
recently [71-74], and we shall only summarize its main features. The basic idea 
of Density Functional Theory (DFT) is to use the electron density p(r) as the 
variable of the system, instead of the electronic wavefunction q'(1,2,...n). This 
choice can be done without loss of rigor, as it has been shown by Hohenberg 
and Kohn that the ground state energy of a multi-electron system is 
completely and uniquely determined by its density, although the explicit 
functional dependence of the energy on density is not entirely known [75]. 
However, in spite of this difficulty, the energy functional satisfies the 
variational principle, i.e. it is minimum for the true electron density of the 
system. Without any approximation, the electronic energy of an n-electron 
system is written, in atomic units" 

E : - ~ E  w~(r,)V~ ~ w~(r,)dr, + E RA[ p(r,)dr, 
1 A 

1 ) P(r2) dr, dr~ + E~ + 2 ~ P ( r ,  (9.68) 

where the first term is the kinetic energy of a reference system of non- 
interacting electrons with the same total density p(r)= ~ n, I v~(r) I " as the 
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actual system of interacting electrons [74], W, and n, being spin-orbitals and 
their occupation numbers respectively. The second term represents the usual 
potential energy arising through electron-nuclei interactions, the summation 
running over the nuclei with charges Z^ located in R^, whereas the third term 
is the classical Coulomb energy resulting from the interaction between the 
electron densities p(r~) and p(r2). The last term of expression (9.68) is more 
delicate: known as the exchange-correlation energy, it represents the energy 
contributions arising from the exchange interactions and correlation effects 
seen previously in this chapter, plus the difference in kinetic energy between 
interacting and non-interacting systems with density p(r} [76]. Actually, the 
major problems of DFT are due to Ex~, as there is no exact formulation for this 
term in the case of our n-electron system and approximations will have to be 
sought. 

Applying the variational principle to the energy given by equation (9.68}, 
Kohn and Sham have subsequently reformulated the density functional theory 
by deriving a set of one-electron Hartree-like equations leading to the 
wavefunctions ~,(r)involved in the calculation of p(r)[77]. In their usual 
formulation, the Kohn-Sham (KS)equations are written as follows: 

1 Za 
+ j" It, - r'llair'} dr, + V~, ] V,ir,) = e, ~r 19.69) 

where the expression in brackets is the effective one-electron Kohn-Sham 
Hamiltonian h~s, the exchange-correlation potential V.o, which contains the 
multi-electron effects, being defined as: 

v [pl= OE [p] [9.70) ~ 3p 

Note that the Kohn-Sham Hamiltoman is a local operator hKs(1), fully 
determined in principle from the knowledge of the electron density [77]. This 
is the main difference with respect to the Hartree-Fock equations {9.22), which 
contain a non-local operator, namely the exchange part of the potential 
operator {equation (9.26)). In addition, the KS equations incorporate the 
correlation effects through V~r whereas they are lacking in the Hartree-Fock 
SCF scheme. Nevertheless, though the latter model cannot be considered as a 
special case of the KS equations, there are some similarities between 
Hartree-Fock and Kohn-Sham methods, as both lead to a set of one-electron 
equations allowing to describe an n-electron system. 

In principle, the KS equations (9.69)would lead to an exact solution to our 
problem, provided the formulation of the exchange-correlation energy 
functional Exr was known. However, in practice, approximate expressions of Go 
must be used, and the search of adequate functionals for this term is probably 
the greatest challenge of DFT [71]. The simplest model has been proposed by 
Kohn and Sham: if the system is such that its electron density is smooth (i.e. it 
exhibits little variations within the molecular volume}, the local density 
approximation (LDA) may be introduced: 
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Ex~ [P] = S p ( r )~  (p)dr (9.71) 

where Go(p) is the exchange and correlation energy per particle of a uniform and 
homogeneous electron gas of density p. Vxo may then be easily deduced from 
this approximate expression of E~ by using equation (9.70) and the KS 
equations can be solved. As for Hartree-Fock based methods, the SCF 
procedure must be used since the hKs Hamiltonian depends explicitly upon the 
solution p(r). 

As shown by Parr and Yang [71], the exchange (G) and correlation (Er 
contributions to Gr can be separated as: 

E (p)= E(p)+ E(p) (9.72) 

and the exchange part is usually taken from electron gas theory: 

3 ( 3 )  1/s 
e~lP) : - ~ k ~ )  P(r) l/a (9.73) 

If no correlation is introduced (e~ = 0), the KS equations reduce to the well 
known Xa method proposed by Slater [78] as a simplification of the 
Hartree-Fock scheme with a local exchange operator: 

I 1 Vl~.+E Z^ 

where ~ is an adjustable parameter. Actually, the X~ formalism is the simplest 
DFT method based on the LDA approximation, and a large number of more 
sophisticated exchange-correlation potentials have been proposed by various 
authors (for a review, see Salahub [76]). Suffice it to mention here that, 
generally, the p~/~ functional is retained for exchange, whereas formulations, 
based on quantum Monte Carlo calculations, have been proposed for the 
correlation contribution. 

Broadly speaking, the LDA formalism, based on equation (9.71), is applicable 
to systems with slowly varying electron densities, a situation which is rarely 
encountered in atoms and molecules. However, experience has shown that 
DFT methods based on LDA give surprisingly good results for the electronic 
structure and related properties of a broad range of compounds, including 
clusters of transition metals [76] and organometallic complexes [74]. Recently, 
it has been pointed out that the LDA formalism can be further improved by 
addition of so-called non-local gradient correction terms, which lead to 
molecular spectroscopic properties in very good agreement with experiment [73]. 

Whatever the form of the V~o exchange correlation potential used, various 
schemes have been proposed to solve the Kohn-Sham one-electron equations 
(9.69). The oldest method is undoubtedly the so-called multiple scattering 
(MS) or scattered wave one, where the molecular volume is partitioned into 
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(spherical) atomic, interatomic and (spherical)extramolecular  regions [79]. 
The KS potential  is generally taken from the Xa formalism, i.e. wi thout  
explicit inclusion of correlation, and approximated as a spherical or volume 
average in each region. In spite of these simplifications, the MS-Xa model has 
led to good predictions [80, 81 ], as exemplified by Table 9.2 which presents a 
comparison between experimental  and MS-Xa ionization energies of 
cobaltocene. However, although it is still in use today for such calculations 
[83, 84], this model does generally lead to an inconsistent variation of total 
energy as a function of structural parameters, which makes it impractical for 
predicting the min ima  of potential  energy surfaces. As the optimization of 
geometrical parameters is often considered to be the top priority in molecular 
modelling applications, the MS-Xa method can at best be used as a second 

Table 9.2 Comparison between MS-Xa and experimental ionization 
energies (eV)of cobaltocene. 

Level Type' MS-Xa Experiment ~ 

4e,= M 3d 4.87 5.55 

5a~g M 3d 7.75 7.15 
7.65 

3e2~ M 3d 8.12 7.99 

4et~ L 2pn 8.34 8.72 

3e,~ L 2pn 9.05 9.92 

4a2~ L 2pn 11.08 

2e2~ L 2po 11.86 

2e2u L 2po 11.95 

3e~u L 2po 12.15 

4a~g L 2pn 12.16 

2e~g L 2po 12.19 

3a2u L 2po 15.22 

12.34 

13.43 

3a~g L 2po 15.43 16.98 

1 e2u L 2po 16.06 

I e2g L 2po 16.15 

"Predominant atomic contribution: M -- metal, L -- ligand. 
bFrom Cauletti et al. [82]. 



DENSITY FUNCTIONAL METHODS 297  

step technique, once the geometry of the compound under study has been 
extracted from a structural data bank or optimized by another tool. It is 
therefore not surprising that the MS-Xt~ model has been supplanted by more 
elaborate DFT methods, which rest generally on the use of the popular LCAO 
approximation. 

Two different DFT schemes have been proposed almost simultaneously to 
solve the KS equations using the LCAO approximation: the so-called Discrete 
Variational Method (DVM)[85], which uses a Slater-type orbital basis set, and 
the Linear Combination of Gaussian-Type Orbitals (LCGTO)-local spin 
density (LSD) technique suggested by Sambe and Felton [86]. Both techniques, 
which have been considerably refined and improved in the last few years [74], 
rely on the fit of the electron density to one centre auxiliary functions to 
achieve a faster calculation of the Coulomb (and exchange in the case of 
LCGTO-LSD) operator of hKs. This leads roughly to a /V ~ scaling of the 
computational effort involved by a LCAO-DFT calculation, where N is the size 
of the one-electron basis set, as compared with the N ~ and N s dependences of 
the SCF Hartree-Fock and CI schemes respectively. This explains the growing 
popularity of these LCAO-DFT schemes, as they allow one to perform 
calculations on large clusters (comprising typically 10-20 transition metal 
atoms) and organometallics (made of up to 50 atoms). In addition, the range of 
application of these techniques has been recently extended by the 
development of pseudopotentials, relativistic corrections and the calculation 
of analytical energy gradients for geometry optimization purposes [74]. As an 
example, Table 9.3 presents the results obtained for various properties of the 
carbon monoxide molecule using the demon LCGTO-LSD program developed 
recently by St-Amant and Salahub [87]. It is easily seen that the overall 
performance of this model is of the same level as that of sophisticated 

Table 9.3 Properties of the CO molecule calculated by various quantum chemical 
models. 

Method 

Property LCGTO-LSD HF-SCF HF-CI Experiment 

dc_o [A] 1.136 1.114 a 1.133 a 1.128 b 
vibrational 

frequency [cm-'] 2'160 2'438" 2'113 c 2'170 b 
proton affinity a 140.9 134.8 e 139.4 e 141.9 f 

[kcal/mol] 
dipole moment [D] 0.16 -0.33' 0.12 a 0.11 ~ 

a6--31G* basis set (Hehre et  al. [8]}. 
bHuber and Herzberg [88]. 
~ result {Hehre et al. [8]}. 
~Zero-point vibrational corrections included. 
eJasien and Stevens [89]. 
fLias et  al. [90]. 
~Hehre et  al. [8]. 
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Hart ree-Fock + CI calculations, which  suggests that  DFT-based techniques 
could be integrated as the tool of choice in future molecular  modell ing 
packages. 
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In this chapter, we shall review the derivation and visualization of molecular 
properties other than conformations, that is, we will concentrate on electronic 
properties. It is indeed true that in most CAMD applications it is necessary to 
go beyond the structural model by clothing it using selected electronic 
properties which will help in rationalizing or predicting the chemical 
behaviour of the compound. To this end, various "property builders", as 
compared with the well known structural model builders, based mostly on the 
quantum chemical methods described in the previous chapter, must be used, 
and they will be reviewed here. 

We have deliberately chosen to place the emphasis in this chapter on local, 
rather than global, properties which can be advantageously represented as a 
complement of molecular models. This indicates that we will present and 
discuss properties amenable to graphical representations only, excluding all 
the global properties, such as spectroscopic ones, which in any case are of little 
use in CAMD. It is therefore natural to begin with the molecular orbitals 
themselves, and to proceed with electron densities and reactivity indices, 
which leads to a very rational framework for this chapter. 

10.1 MOLECULAR ORBITALS 

Historically, molecular orbitals (MOs)were the first electronic property to be 
visualized on simple graphics hardware such as printers, plotters, etc., before 
being advantageously represented on the screen of PCs and workstations. 
Actually, MOs of selected compounds were first reported as reproductions of 
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listings presenting the numerical values of their coefficients [1, 2] (Figure 
10.1) before the first textbooks appeared with three-dimensional plots [3], in- 
plane contour levels [4] and wire-frame surfaces [5]. Simultaneously, in the 
1970s, several programs for drawing MOs on a display terminal or plotter 
linked to it were made available, which significantly contributed to 

Molecular Orbital Cocfficicnts 

I 2 3 4 5 
(BIU)--O (AG)--O (AG)--O (BIU)--O (B2U)--O 

EIGENVALUES--  -9 .59890 -9.59821 - 067947  - 0.52038 - 0.43192 
l IC IS 0.69858 0,69965 - 0.18412 - 0.14427 0.00000 
2 2S 0,04948 0,02989 0.45277 0,40764 0.00000 
3 2PX 0,00000 0.00000 0.00000 0.00000 0.00000 
4 2PY 0.00000 0.00000 0.00000 0.00000 0.41437 
5 2PZ - 0.00748 0.00443 - 0.09724 0.21152 0.00000 
6 2C IS - 0.69858 0.69965 - 0.18412 0.14427 0.00000 
7 2S - 0.04948 0.02989 0.45277 - 0.40764 0.00000 
8 2PX 0.00000 0.00000 0.00000 0 .00000 0.00000 
9 2 PY 0.00000 0.00000 0.00000 0.00000 0.41437 

10 2PZ - 0.00748 - 0.00443 0.09724 0.21152 0.00000 
11 3 H IS - 0.00917 0.00864 0.12427 0.21439 0.23169 
12 4 H  IS - 0.00917 0.00864 0.12427 0.21439 - 0.23169 
1 3 5 H  IS 000917 - 0.00864 0.12427 - 0.21439 0.23169 
1 4 6 H  IS 0.00917 - 0.00864 0.12427 - 0.21439 - 0.23169 

6 7 8 9 I0 

(AG)--O (B3G)--O (B3U)--O (B2G)--V (B2U)--V 
EIGENVALUES--  -0 .35259 - 0.30779 - 0.21130 0,05830 0.41232 

1 IC IS 0.01886 0.00000 0.00000 0.00000 0.00000 
2 2 S - 0.02781 0.00000 0.00000 0.00000 0.00000 
3 2PX 0.00000 0.00000 0.63129 0.81903 0.00000 
4 2PY 0.00000 0.41184 0.00000 0.00000 0.75123 
5 2 PZ 0.523 78 0.00000 0.00000 0.00000 0,00000 
6 2C IS 0,01886 0.00000 0.00000 0.00000 0.00000 
7 2 S - 0,02781 0.00000 0.00000 0.00000 0.00000 
8 2 PX 0.00000 0.00000 0.63129 - 0 .81903 0.00000 
9 2PY 0.00000 -0.41184 0.00000 0.00000 0.75123 

10 2PZ - 0.52378 0.00000 0.00000 0 .00000 0.00000 
i ! 3 H IS 0.19345 0.33625 0.00000 0.00000 -0.69260 
12 4 H IS 0.19345 -0.33625 0.00000 0.00000 0.69260 
13 5 H  IS 0.19345 -0.33625 0.00000 0.00000 -0.69260 
14 6 H IS 0,19345 0.33625 0.00000 0.00000 0.69260 

Figure 10.1 Listing of the coefficients of the MOs calculated for ethylene using the 
Gaussian package [3]. 

popularizing the use of MO methods among chemists [6-9] (Figure 10.2). 
Subsequently, with the tremendous progresses witnessed in both computer 
graphics hardware and software, sophisticated p]ckages allowing us to build 
and manipulate solid models representative of the 3D features of MOs on 
graphics workstations have appeared, and they are too numerous to be 
quoted here in  e x t e n s o .  Let us mention, to take a single example, the 
spectacular representation of MOs as coloured isovalue surfaces treated as 
3D models by the SPARTAN package [10], which is actually the successor of 
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Figure 10.2 Three-dimensional plot (A), in-plane contour levels (B, the sign of the 
label indicates the sign of the orbital lobes) and wire-frame isovalue surface 
representation (C) of the lb3~ HOMO of ethylene. From [6] (A and B) and [5] (C){from 
Thalmann et al. [5] and Jorgensen et al. [6]). 

the program used by Hout e t  al. to produce the models, unfortunately in 
black and white, of the MOs of numerous compounds in their pioneering 
textbook [11]. 

More than 20 years after the publication of the milestone theoretical treatise 
by Woodward and Hoffmann [12] about the conservation of orbital symmetry, 
MOs are more popular than ever to rationalize the broad features of chemical 
reactivity. According to these authors, it is indeed possible to describe the 
stereo- and regiochemical aspects of basic bonding processes in organic 
chemistry, such as pericyclic reactions, from an inspection of the shapes and 
symmetries of the frontier orbitals (FO) of the reacting species. As these 
concepts may be extended to a broad range of mechanisms in organic and 
organometallic chemistry, it is clear that the construction and manipulation, 
using an interactive graphics system, of any type of MOs, be they obtained 
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from semi-empirical or ab initio quantum chemical models, enables the 
chemist to perform modelling which goes far beyond the structural 
representations. 

A basic postulate of FO theory [13] is that, for mechanisms governed by 
orbital control [14], an electrophile reacts with a given substrate S at the 
atomic centre with the largest coefficient in the highest occupied MO (HOMO) 
of S, whereas a nucleophile will attack the position corresponding to the 
largest coefficient in the lowest unoccupied MO (LUMO). If we take pyrrole as 
an example, Fukui [13] found, using the HMO model, the HOMO coefficients 
shown in Figure 10.3. The values of these coefficients indicate that carbon C2 
is most likely to undergo electrophilic attack, a result which is confirmed by a 
characterization of the halogenation reaction product obtained by Mazzara and 
Borgo [ 15]. 

-0.371.~5 ~4  3 ~.371 

-0.602 ~ 0.602 
1 
N i 0.0 
H 

Figure 10.3 The HOMO coefficients of the pyrrole molecule as calculated using the 
Htickel molecular orbital method. 

Although there are several exceptions to these simple rules, they are very 
useful to assess in a first approximation the regioselectivity of electrophilic 
and nucleophilic additions or substitutions to organic substrates. In this case, 
in view of the approximations inherent to this crude model, it is not necessary 
to use "accurate" ab initio MOs, and the representation (or examination of the 
corresponding coefficientsl of semi-empirical MOs is sufficient to apply FO 
theory. However, the innocent reader should be warned of the limitations of 
this approach and, in cases where reliable information is needed, of the 
necessity to use a more elaborate model involving, for example, the 
calculation of reaction pathways. In addition, for inorganic and organometallic 
reaction mechanisms, the FO approach is of a more dubious quality, in view of 
the presence of several energy levels lying close to the HOMO and LUMO of 
the substrates, and the use of more refined procedures, even if they are based 
on simple semi-empirical M e  models such as EH, is strongly advisable [16-18] 
(see section 10.4). 

In this section, we illustrate the role pictorial representations of MOs can 
play in CAMD by using two examples pertaining to organic and 
organometallic chemistry. The first is concerned with the molecules of pyrrole 
1 and pyrrolidine 2 which both are flve-membered heterocycles (Figure 10.4). 

However, the aromaticity of 1 involves participation of the lone-pair 
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Figure 10.4 

I I 
H H 

1 2 

The molecules of pyrrole (1) and pyrrolidine (2). 

electrons of nitrogen to the n-electron system, which is not the case for th, 
saturated heterocycle 2. As a consequence, 1 is much less basic than 2 as th, 
lone pair of its nitrogen atom is much less available for electrophilic attac] 
or, in the case of intermolecular associations, for hydrogen bonding [19]. Le 
us see now whether the electronic structures of 1 and 2, in particular th, 
composition and shape of their frontier orbitals, reflect their very differen 
nucleophilic properties. The results reported for these compounds have bee1 
obtained using the ab initio SCF model with the 3-21G one-electron basi~ 
set [20]. 

We first note that the HOMO of pyrrolidine lies at an energy of-9.52 eV, i.e 
1.63 eV lower than that of pyrrole, which already indicates that 2 is a bette: 
donor and a more basic species than 1. Looking now at Plate VI, which display: 
the HOMO of 1, it is seen that it is of n type without  any contribution fror~ 
nitrogen which, according to the FO model and using the criterion of th, 
largest atomic contribution to the HOMO, suggests that protonation does no 
occur on this atom but on the carbon located in the a position. This is in gooc 
agreement with experimental evidence, pointing out that electrophilic 
substitution occurs predominantly at the a position in five-memberec 
heterocycles [21], and also with theoretical studies of the protonatior 
mechanism of pyrrole [22, 23]. This nice application of the FO mode 
illustrates the potential of the method and how useful it can be to display MO~ 
so as to simply rationalize some basic reaction mechanisms of organic 
chemistry. 

Looking at another MO of pyrrole, we find as HOMO-1 a second n MO ma& 
of the lone pair of nitrogen and of contributions from the ~ carbon atoms (Plat, 
VII). As mentioned above, the lone pair orbital of nitrogen is therefore strongl~ 
involved in the n system of the molecule, and it does lie at a lower energy that 
the HOMO, thus being less available for interaction with an incomin~ 
electrophile. The display of contour levels of the HOMO-1 of pyrrole (Plat{ 
VIII) of course confirms the conclusions drawn from the solid mode 
representation (Plate VII). They may, however, lead to a more accurat~ 
description of the characteristics of the orbitals in a given plane. It is, fo: 
example, immediately seen from inspection of Plate VIII that the HOMO-1 o: 
pyrrole is more localized on nitrogen than on the n bond between ~ carbor 
atoms, as indicated by the presence of higher value contours in the n region o: 
nitrogen. 



3 0 6  DERIVATION AND VISUALIZATION OF MOLECULAR PROPERTIES 

Comparing now the reactivity of species 1 and 2 towards electrophiles by 
means of the FO model, it is seen in Plate IX that the HOMO of pyrrolidine is 
indeed made of the lone pair of nitrogen, which means that according to the FO 
formalism, this site should be attacked preferentially by an electron acceptor. 
As mentioned above, this correlates well with the nucleophilic properties of 
saturated heterocycles, and with the larger basicity of pyrrolidine as compared 
with pyrrole. 

Our second example is devoted to the well known molecule of ferrocene, 
which is the most prominent member of the metallocene series (Figure 10.5). 
Of course, the point here is not to make a detailed description of the structural 
and reactive features of this fascinating compound; the interested reader will 
find this information in other textbooks [24-26]. Instead, we shall see how a 
pictorial representation of some MOs helps understanding some properties of 
ferrocene. 

I 
Fe 

Figure 10.5 The ferrocene molecule. 

An energy diagram of the MOs of ferrocene in the frontier region is 
represented in Figure 10.6. It has been obtained by performing LCGTO-LSD 
density functional calculations using the demon program [27]. As usual for 
ferrocene, the MOs are labelled according to the Dsa point group, even though 
the compound is known from gas-phase electron diffraction data to exhibit a 
D~h symmetry with eclipsed and planar ligand rings [28]. 

Ferrocene is a closed-shell molecule with the (3e,,l'(5a,,}~{4el,) ~ 'A,, 
configuration. The predominantly 3d orbitals are, by order of increasing 
energies, 3e~, [HOMO-11, 5a,, {HOMO) and 4e,, {LUMOI, and it is seen in Figure 
10.6 that they are energetically sandwiched between the occupied n and virtual 
n* MOs of ligands. The iron atom is formally in the U oxidation state with a 
3d64s  ~ configuration, though covalency effects have been shown to 
significantly modify this simplistic description [29]. Indeed, some ~ occupied 
MOs with predominant ligand n character such as 3e,, exhibit large admixtures 
of metal 3d orbitals, which leads to a significant ligand-to-metal charge 
donation. As there is simultaneously much less metal-to-ligand back donation 
arising through the 3e~, and 5a,, MOs, it is not surprising to find in usual 
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Figure 10 .6  Energy level diagram of the MOs of ferrocene as deduced from LCGTO- 
LSD calculations. 

quantum chemical calculations a substantial positive charge on metal, ranging 
roughly from +0.7 to +1.4 [29]. 

Returning to the MOs of ferrocene, 4e~u exhibits a typical ligand rc character 
with little admixture of metal 4p. However, suppress the metal 4p 
contribution to this MO is much smaller than the corresponding 3d admixture 
to 3e,g, which suggests, as expected, that the role played by the metal 4p AO in 
chemical bonding is almost negligible. The pictorial representation of the 
predominantly metal 3d orbitals illustrates perfectly their different nature in 
such complexes: 3e~, is of 3d6 type, whereas 5a,~ (Plate X) and 4e,, (Plate XI) are 
of 3do and 3drt types respectively. The latter one is the LUMO with a strongly 
antibonding character, as it exhibits a large out-of-phase admixture of ligand rr 
AOs. 

When applying the FO model to ferrocene, i.e. deriving the most favourable 
sites for electrophilic and nucleophilic attacks from an inspection of the 
HOMO (Plate X)and LUMO (Plate XI), respectively, we conclude that both are 
located on metal as this atom has predominant contributions to both of these 
MOs. However, whereas this prediction is essentially correct for the addition 
of an electrophile, as both experimental [30] and theoretical [31] studies have 
shown that ferrocene protonates readily on metal in strong acids, the site of 
nucleophilic attack as calculated in the FO model does not agree with 
experiment. It is indeed known experimentally that the isoelectronic 
cobalticinium ion undergoes nucleophilic addition on the exo-face of a ligand 
ring [26}, whereas the 4e~g MO of this compound is very similar to that of 
ferrocene and still exhibits its largest coefficient on metal [32]. This is our first 
example of failure of the very simple reactivity index derived from the FO 
model and we are going to see some other ones in sections 10.3 and 10.4. This 
explains why some more sophisticated indices should be used, particularly 
when organometallic substrates are examined, and this will be a major topic of 
the present chapter. 
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10.2 ELECTRON DENSITIES 

The electron density is undoubtedly the easiest property to derive from the 
one-electron wavefunctions calculated for a given compound. Formally, the 
electron density p(r), i.e. the number of electrons per unit volume centred in r, 
of a system approximated by a single Slater determinant (equation (9.16))is 
defined as 

,l l: X  l ,l,lJ 11011 
I 

where the summation runs over all the spin orbitals ~g, of the system, each of 
them being characterized by an occupation number n,, such as ni = 1 for 
occupied spin orbitals and n, = 0 for virtual ones. 

In the case of a closed-shell system, equation (10.1} becomes: 

ol,t- Xo, l,,t,lr 110 1 
I 

where the r MOs with occupation numbers n, equal to 2 {occupied} or 0 
(virtual ones}. 

In cases where post-SCF calculations, such as a CI treatment, have been 
performed, it is no longer possible to define the electron density using 
equations (10.1)or (10.2). Instead, L6wdin has shown that a corresponding 
expression may be used [33]: 

l 

where the X~ are the so-called natural orbitals, whose property is to diagonalize 
the one-electron density matrix, with occupation numbers ni possessing any 
fractional value between 0 and 1. 

In the case of most quantum chemical calculations, be they of the SCF or CI 
post-SCF type, it is therefore possible to rapidly evaluate the electron density 
at any point of the molecular volume. Generally, as a Hartree-Fock 
wavefunction leads to an electron density which is exact to the second order 
[34], an SCF calculation is sufficient to provide a reliable description of the 
electron distribution. The possibility of easily calculating p(r) has prompted 
theoreticians to use this property to derive additional information on the 
nature of chemical bonds and, possibly, on molecular properties such as 
reactivity [35-38]. However, these latter properties are mostly related to the 
distribution of valence electrons and the main features of the distribution of 
total electron density within the molecular volume is strongly dominated by 
core electrons [39, 40]. This is clearly depicted in Figure 10.7, which displays 
contour levels of the total electron density in the molecular crystal of a 
substituted anthracene as obtained from high-resolution X-ray crystallography 
[401. 
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Figure 10.7 Total electron density in 9-tert-butylanthracene (from Angermund et al. 
with permission [40]). 

Total electron densities are indeed characterized by high-value circular 
contour levels lying close to the atoms, indicating that atomic core electron 
densities remain practically undistorted and spherical during bond formation. 
This suggests that a more sensitive property, describing better the changes in 
electron distribution induced by interatomic bonding, can be obtained by 
subtracting from p(r) the spherical electron densities of unperturbed atoms, 
and we shall return to this point below. However, the total electron density 
of a given compound can be advantageously used to describe and possibly 
quantify its shape. It is indeed possible to "measure" the size of a compound 
or to compare molecular shapes by building isovalue contours or surfaces 
around the molecular skeleton. To be meaningful, this procedure must be 
carried out by selecting a constant p(r)value for the contours or surfaces 
calculated and represented, and generally the value 0.002 au is used, as it has 
been shown that this choice gives physically reasonable molecular 
dimensions [35, 41, 42]. Indeed, an isovalue surface at 0.002 au of the 
molecular electron density generally encompasses at least 95% of the 
electronic charge. 

Practically, the graphical representation of p(r) can .be achieved in a similar 
way as that of the MOs we have seen in the previous section, namely as 
contour levels in selected planes, three-dimensional plots and solid models. Of 
course, this latter mode of representation requires all the attributes of standard 
3D modelling i.e. color, shading, clipping, etc. The 3D solid representation of 
an isovalue p(r) surface is in many respects very similar to the Connolly 
molecular envelope we have seen in Chapter 8. Indeed, as we have seen before 
that molecular electron densities are strongly dominated by spherical core 
electron distributions, it is no~ surprising that isodensity surfaces are very 
much like envelopes built from van der Waals radii. Of course, this striking 
resemblance is only observed when choosing an adequately small value of p(r), 
such as 0.002 au. 
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To enable a better comparison between the 0.002 au isodensity surface and 
the Connolly envelope, Plate XII presents a superposition of these two surfaces 
in the case of the pyrrole molecule. It is seen that the two surfaces are indeed 
very similar in their shapes and sizes, the Connolly one being slightly more 
elongated in the molecular plane. Simultaneously, the isodensity surface has a 
larger size perpendicular to the molecular plane, which should be related to the 
significant n-electron density of pyrrole. 

In any case, no attempt has been made to optimize the isodensity surface 
value so as to have a closer agreement between these two envelopes. 
Nevertheless, it is clear that both surfaces could be equally used to roughly 
quantify molecular shapes or to carry additional information such as a 
reactivity index (see sections 10.3 and 10.4). 

Let us turn now to the use of electron densities to discuss the main features 
of chemical bonding. As mentioned above, this must be achieved using a more 
sensitive property than p(r)itself: the electron density deformation (EDD)Ap(r) 
defined a s :  

Ap{r) : p(r)- EpA(r  ) (10.4) 
A 

where p(r) is the molecular (total)electron density and p~(r)is the spherically 
averaged electron density of atom A, the summation running over all the 
atoms of the molecule. 

The EDD, which was first proposed by Roux and Daudel [43], represents 
the deformation of the spherical charge distribution of the atoms resulting 
from the formation of chemical bonding, i.e. from molecule formation. As 
valence electrons are the more concerned and redistributed during bond 
formation, the EDD will largely reflect the subtle electronic effects 
accompanying the transformation of isolated spherically averaged atoms into 
a molecule. As a general rule, the EDD maps exhibit electron density 
accumulation near the midpoints of covalent bonds and in lone pair regions 
[44] {Figure 10.8). 

An advantage of the EDD local property is that it can in several cases be 
determined experimentally from X-ray diffraction. The EDD maps thus 
obtained in the form of contour levels can therefore be used for detailed 
comparison with calculated EDDs, which allows calibration of the one- 
electron and N-electron basis sets of ab initio calculations. 

For theoreticians, such tests are of great value, as they provide an 
immediate answer as to the quality of their calculations, without requiring 
one to evaluate elaborate spectroscopic properties. In CAMD applications, 
however, EDDs are of limited value as they can hardly be used as reactivity 
indices or as descriptors of properties useful in molecular design [45]. On 
the other hand, Bader has recently developed a model allowing one to 
correlate the Laplacian of the total molecular charge density with chemical 
reactivity [38], which leads essentially to similar results as those of the FO 
theory. 
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Figure 10.8 Contour levels of the EDD calculated for valence electrons for the 
[Cr(O2),] 3- compound in the (1,1,0) plane. Contour values differ by 0.10 e//~3; solid lines 
indicate positive contour values, dashed lines negative ones (from Roch et al. with 
permission [44]). 

10.3 ELECTROSTATIC PROPERTIES 

There is a long tradition in the use of electrostatic models in chemistry, which 
probably traces back to Faraday [46]. Actually, it is interesting to notice that 
such approximate methods have not been totally superseded by quantum 
theory. On the contrary, they are nowadays becoming more and more popular 
because of their simplicity and possible uses in CAMD. 

Basically, the generalized Hellmann-Feymann theorem allows one to make 
the connection between classical electrostatics and quantum theory, stating 
essentially that "the forces on the nuclei in a molecule can be calculated by 
classical electrostatics provided one describes the electron distribution using 
the correct quantum chemical wavefunction'" [47]. The important point is 
therefore that classical electrostatics may apply to derive molecular 
properties provided quantum chemical calculations are performed to derive a 
reasonably accurate electron distribution (see the previous section). The 
purpose of this section is to describe why and how electrostatics is used in 
this context. 

Due to their long-range nature arising from their r -~ behaviour, electrostatic 
energies between interacting fragments play a crucial role in solving problems 
of molecular recognition such as drug-receptor, substrate-enzyme or ion- 
ionophore interactions. However, several difficulties are encountered when 
attempting to perform an accurate theoretical treatment of these interactions: 
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solvent effects may play an important role on them, the atomic charges and 
higher multipole moments derived from the electron density are not uniquely 
defined, and it is not easy to describe the polarization of charges when the 
fragments approach each other, etc. [48]. As these problems are complex in 
nature, which explains why intensive research work is still in progress in this 
field, we will discard them here and concentrate on two very popular 
approaches to the problem of electrostatic interactions, namely the molecular 
electrostatic potential and the electrostatic field. 

10.3.1 Molecular electrostatic potentials 

As first defined by Bonaccorsi et  al. [49], the molecular electrostatic potential 
{MEP) V{r) represents the value, at first order of perturbation, of the interaction 
energy between molecule M and a proton located in r {Figure 10.91: 

-r'[ 110.5) 

where the first term corresponds to nuclear repulsion, the summation running 
over all atoms of M, with nuclear charge Z~ located in r~. The second term 
originates from electronic attraction, p(r')being the electron density of M and 
the integration being carried out over the whole space. 

Figure 10.9 Representation of the various parameters involved in the electrostatic 
interaction energy between molecule M and a proton. 

Using the definition of p(r) as deduced from the one-electron approximation 
for a closed-shell system [equation {10.2))and the LCAO approximation for the 
molecular orbitals r {equation {9.271), it is straightforward to deduce the 
following expression for V{rl: 

r / 
VIrl = ~ [r ZA (r')z~ ( )dr' (10.6) 
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where P~. is the first-order density matrix defined by equation (9.32) and the Z~ 
are the AO basis functions used. 

The calculation of V(r)in any LCAO model, be it semi-empirical or ab initio, 
thus requires, according to equation (10.6), the evaluation of one-electron 
integrals of nuclear-attraction type as those involved in equation (9.30). The 
computational machinery necessary for this evaluation is therefore 
immediately available in all ab init io and most semi-empirical programs [50]. 
For practical applications, however, we shall see below that the MEP V(r} has 
to be evaluated repeatedly at selected points in 2D or 3D space, which may 
lead to a prohibitive computational effort for large molecules or when 
extended one-electron basis sets are used. In such cases, the molecular electron 
density may be replaced by a set of point charges q~, generally located on the 
atoms and calculated from the wavefunction itself by means of a Mulliken 
population analysis [51] or, better, by a fitting procedure of the "exact" MEP 
evaluated at a limited number of grid points surrounding the molecule and 
located beyond the van der Waals surface [52]. This leads to the following 
approximate expression for V(r): 

�9 _r l ( lo .7 )  

where r, is the position of point charge q,. 
One generally imposes the constraint that the sum of the q, must be equal to 

the molecular charge. It has been shown recently that MEP-derived charges, 
which may also be used advantageously to parametrize the electrostatic term 
in empirical force fields (see Chapter 5), are adequate to reproduce using 
equation (10.7) the gross features of "exact" MEPs calculated from equation 
(10.6} [53]. Actually, at rather large distances from the molecular skeleton 
{typically beyond van der Waals atomic spheres}, it is possible to approximate 
the MEP in a very accurate way using an analytical, multicentre, multipole 
expansion which considerably reduces the computational time with respect to 
the quantum evaluation of the MEP using equation (10.6)[54]. To this end, the 
electron density calculated using the chosen quantum chemical model must 
first be expanded as a finite number of multicentre multipole contributions. 
This procedure is very efficient for large molecules where the expansion is 
made in terms of approximately transferrable fragments [55]. However, it has 
the drawback of being valid at large distances from the atoms, but in any case 
this is the region where intermolecular energies can be approximated to a good 
extent by the electrostatic component [56]. 

Interestingly, we note when inspecting equation {10.5} that the MEP at any 
point r is given by summing up two components of opposite signs: the positive 
nuclear one and the negative electronic one. The sign of V{r)will then depend 
upon whether the nuclear or electronic interaction is dominant at position r. 
As Weinstein et al. have shown that the MEP of an isolated, neutral atom is 
positive everywhere [57], we expect that negative regions of V(r} will be found 
in molecules at regions of electron density accumulation accompanying the 
formation of chemical bonds, i.e. close to the lone pairs of heteroatoms or to 



3 1 4  DERIVATION AND VISUALIZATION OF MOLECULAR PROPERTIES 

multiple bonds. Roughly speaking, the negative regions of the MEPs should 
therefore be found in positive regions of the EDDs we have seen in the previous 
section [45], that is in electron-rich portions of the molecular volume resulting 
from build-up of electron density. 

It is worth noting that the electrostatic potential is a real physical quantity 
which can be determined experimentally by X-ray diffraction or electron 
diffraction techniques [58], which in principle allows us to perform meaningful 
comparisons with their theoretically derived counterparts. 

One of the main advantages of the MEP property is that it can be used as a 
reactivity index to predict the regions and sites of a substrate S which are the 
most reactive towards protonation or, more generally, towards an 
electrophilic attack. Indeed, an incoming electrophile R is likely to be 
initially attracted by S in the regions of negative Virl and the sites of addition 
will be those corresponding to the MEP minima, with the most favorable 
site for S-R interaction corresponding to the global minimum. It has to be 
said, however, that the MEP is only the long range part of the total S-R 
interaction energy and that additional components, such as the energy due 
polarization of electron distribution of $ by the proton and that arising 
through S-R charge transfer, become important when R penetrates the van 
der Waals atomic spheres of S (see the next section). In addition, the MEP 
reflects the exact S-R electrostatic energy only when R is a proton, i.e. a 
hard electrophile. For other electrophiles and especially the softer ones, 
{frontier) orbital interactions should be taken into account [14]. Moreover, for 
this category of electrophiles R, the electrostatic component Eo, of their 
interaction energy with S contains two additional terms, namely the 
attraction and repulsion of the electron density of R by the nuclei and 
electrons of S respectively, and the MEP as given by equation {10.5)is only 
an approximation of the true E.. 

We now turn to some examples of the usefulness of the MEP property in 
chemistry. Again, as previously stressed in this chapter, graphics play a very 
important role for a rapid and comprehensive examination of the features of 
any MEP: due to the local character of VIr}, this property must be calculated at 
many points in the 3D space surrounding the substrate, and it would be 
impossible to process this large amount of information without graphics. The 
following representations of the MEP are therefore most commonly used: 
contour levels in selected planes, historically the first procedure used [49]~ 
coloured area maps, where areas between successive contour levels in a plane 
are coloured as a function of the MEP value [45]~ colour-coded dots on the 
Connolly molecular surface [59]~ mapping of the MEP value onto solid models 
of electron density isosurfaces [60] or of molecular surfaces [61]~ and isoenergy 
surfaces represented as wire-frame [62] or solid models [45]. Let us examine 
and briefly comment upon these various representations. 

The display of MEPs as contour levels in selected plane{sl, as depicted in 
Figure 10.10, is very convenient for an accurate evaluation of the 
characteristics of V{r)[63] but, of course, it leads only to a 2D representation 
and it could be misleading for complex molecules or when competing sites are 
present in even simple compounds. The same statement applies to coloured 
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Figure 10.10 Contour levels (in kcal/mol) of the MEP of adenine; solid lines indicate 
positive contour values, dashed lines negative ones (from Bonnaccorsi et al. with 
permission [63]). 

area maps, which are mainly used for a rapid evaluation of the main  features of 
MEPs in selected planes. 

However, being restricted to a representation of the MEP property in various 
planes, contour levels or coloured area maps are generally of l imited value for 
a rapid est imation of the most  favourable site for electrophilic attack, except 
for two cases: 

�9 small molecules with only one basic centre, such as H~O, NH3 or 
pyrrolidine, for which one can anticipate in which plane the MEP 
m i n i m u m  will lie; 

�9 the modelling software used allows the instantaneous construct ion of 
coloured area maps in a given plane, and subsequently to translate 
interactively that  plane wi thin  the whole molecular  volume, wi th  
s imultaneous reconstruction of the MEP maps, which leads to a fast 
localization of the global min imum;  such a facility is implemented  in 
various packages such as UNICHEM [64]. 

Significant progress was made in 1982 with  the procedure suggested by Weiner 
et al. [59] and consisting of the representation of the MEP as colour-coded dots 
on the Connolly surface of the substrate. Indeed, since these surfaces were first 
depicted as dots defining the molecular  envelope, the idea was to colour these 
dots according to the MEP value, using a standard colour code, so as to generate 
four-dimensional (three for structural features and one for the MEP) models. In 
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this way, it is fairly easy to localize in a single step {i.e. using a single graphical 
representation} the most reactive site of the substrate towards electrophilic 
attack, except for compounds with several possible sites lying close to one 
another in MEP values and for which this kind of modelling might be 
ambiguous. 

As Connolly dot surfaces are generally made of 2000--5000 pixels for 
compounds with up to 50 atoms, this representation does not in general 
require one to evaluate the MEP at a number of points which is significantly 
larger than for contour levels in a single plane. It is therefore very popular 
and implemented in practically all the molecular modelling packages 
running on workstations {or even on PCsJ, with a MEP calculated using the 
point charge approximation {equation {10.7}} in order to accelerate the 
calculations. 

Instead of using the dot surface of Connolly to map MEP values, it is possible 
alternatively to generate solid models of the surface and to colour them 
accordingly by taking advantage of all the rendering facilities offered by 
graphics workstations: smooth shading, large colour scale available, the 
possibility of using several light sources, etc. The result is in general 
spectacular [61], although one should realize that it is much more difficult to 
manipulate these solid models in real time as compared with their colour- 
coded dot analogues. Examples are provided by Plates XIII and XIV, which 
display solid models of the Connolly surface of pyrrole and pyrrolidine 
respectively, coloured according to the MEP and properly clipped so as to also 
visualize the structural model. There is a general agreement among software 
developers as to the colour-coding range of the surfaces, from red and yellow to 
blue, extending smoothly over the numerical range of E,,, from the most 
negative to zero to the most positive values, which means that the red zones 
correspond to preferred sites of electrophilic attack. It is seen in Plates XIII and 
XIV that whereas the nitrogen atom of pyrrolidine is indeed predicted by the 
MEP to be the most favourable site for electrophilic attack, which is in 
agreement with the experimental evidence, the 13 carbon atoms of pyrrole are 
the most reactive ones towards incoming electrophiles in this MEP 
approximation, and this is in contradiction with both structural and kinetic 
studies pointing to an cx attack. However, in agreement with the relative 
basicities of pyrrole and pyrrolidine, the min imum value of the MEP on the 
molecular surface of pyrrolidine lies at a considerably lower energy than the 
corresponding value obtained for pyrrole. The fact that the regioselectivity of 
electrophilic attack on pyrrole is not correctly described indicates that the use 
of the MEP as a reactivity index for electrophilic addition reactions should be 
made with some care, as it is only a static property taking account of the 
ability of the undistorted substrate, with frozen electron density, to react with 
a proton [65]. In several cases, more elaborate models accounting for both 
structural deformations and electron density rearrangements should be used, 
and we will return to this point later on in this chapter. 

Turning back to the different modes of representation of MEPs, we should 
mention that it has also been suggested to map their values on van der Waals 
envelopes [66] or electron density isosurfaces at 0.002 au [60]. The latter have 
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recently been advocated as being better than other envelopes because they 
should better reflect unique molecular features such as bond formation, lone 
pairs, etc. [42]. However, in view of the very close matching between such 
surfaces and Connolly molecular envelopes, this argument is most probably of 
little value. Finally, MEPs are also displayed as isoenergy models in 3D space, 
either in the form of wire-frame [62] (Figure 10.11) or solid surfaces [43] 
(Plate XV). 

This type of representation requires immersing the substrate into a 3D grid 
box and calculating the MEP at a large number of points, generally of the order 
of 10s-106, which of course involves a significant computational effort, unless 
an approximate evaluation of the MEP is performed. However, it can be seen 
that whereas such models lead in the case of positive isoenergy surfaces to 
another type of molecular surface, to be compared with Connolly or electron 
isodensity envelopes, they are able to perfectly locate the MEP minimum in 
the molecular volume (Plate XV). This is undoubtedly useful for molecules 
with several MEP minima, as lowering progressively the energy of the 
isosurfaces leads inevitably to the local minima disappearing and the global 
one staying as the only isoenergy envelope. 

Numerous applications of MEPs have appeared in the last ten years, and the 
most important ones have been reviewed by Politzer e t  al. [67, 68]. In 
particular, it is shown that MEPs are of invaluable help in rationalizing and 
predicting several important processes such as electrophilic addition or 
substitution reaction mechanisms, biological recognition, hydrogen bonding, 
etc. Interesting correlations have been found between MEP minima and 
chemical properties such as solvatochromic hydrogen-bond donor and 

Figure 1 0 . 1 1  Wire-frame model isoenergy (V = 100 kcal/mol) surface of mescaline 
(from Doucet et al. with permission [62]}. 
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acceptor parameters ~ and ~, inductive and resonance substituent constants ~, 
and g~, pK. values, etc. 

It has also been suggested that the MEP may be used as a reactivity index for 
nucleophilic attack, in which case the reactant is attracted towards positive 
regions of this local property, provided one considers the maxima of MEPs 
calculated on surfaces sufficiently removed from the nuclei [42]. Indeed, the 
absolute maxima of the MEPs are located on the atoms because they 
correspond to maximum nuclear repulsion, and the use of a molecular surface 
is indispensable to prevent the incoming nucleophiles to collapse on to the 
nuclei. This amounts to assuming the presence of an infinite exchange- 
repulsion potential on the molecular surface {hard spheres approximation}, and 
we shall return to this point in the next sections. 

Undoubtedly, the MEP is an indispensable tool in CAMD applications 
because of its simplicity and versatility. This is particularly true for organic 
molecules and fragments where intermediate range effects such as charge 
transfer or polarization are generally negligible, which means that the 
reactivity of frozen substrates may be described to a good extent by their 
ability to attract or repel incoming species through long range electrostatic 
interactions. 

10.3.2 Molecular electrostatic fields 

Instead of the MEP V(r)(equation (10.5)), several authors have suggested using 
the electrostatic field {El:] E to describe long-range electrostatic interactions, 
with E defined as: 

E = - VV{r} (10.8) 

where V is the gradient with respect to r, i.e. to the proton position [69-71]. By 
definition, the EF is a vector normal to the isoenergy MEP surface passing by 
point r, which represents the force acting on a unit test positive charge located 
in r. It may be therefore useful to calculate and display the flow of EF vectors 
around a molecule, especially in the region which is most likely to be involved 
in molecular recognition (Figure 10.12). Indeed, these vectors, whose length is 
of course proportional to the magnitude of EF, correspond to the orientation of 
an external point dipole experiencing the molecular field and, thus, they 
provide an approximate description of the docking of polar X-H bonds into 
hydrogen bonding positions [71]. As was the case for the MEPs, the EFs can be 
conveniently approximated using a multicentre multipolar expansion of the 
electron density, which considerably reduces the computer time involved in 
the calculation of the flow of EF vectors surrounding a given compound. 

We have briefly mentioned in this section the limitations of the electrostatic 
approximation, in particular of the MEP, to predict reliably the preferred sites 
for electrophilic attack. To summarize them, the MEP is a static reactivity 
index which does not take account of the important changes in both the 
structure and charge distribution of the substrate which may arise through 
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Figure 10.12 Representation of the electrostatic field surrounding the molecule of 
pyrimidine (from Price et  al. with permission [71]). 

protonation [72]. In other words, the MEP and EF are better to describe 
kinetically controlled processes with an early transition state, that is 
mechanisms for which these changes are relatively unimportant. However, 
these indices are likely to be less reliable for thermodynamically controlled 
processes, and we shall review in the next section some other procedures 
which could be useful alternatives for such cases. 

10.4 REACTIVITY INDICES 

We have previously seen that the MEP may be used as a local reactivity index, 
i.e. as a property defined at any point of the molecular volume and whose value 
directly correlates with the propensity of the compound to react with an 
incoming species located at this point. The advantage of local reactivity 
indices lies in the fact that they may be easily represented on graphics 
workstations using the various techniques described in the previous section, 
which allows the chemist using such CAMD tools to rapidly localize the hot 
regions corresponding to favourable interaction energies and to roughly 
identify low-energy reaction pathways [73]. Of course, such models of 
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chemical reactivity are approximate, and in no way can they be considered as 
substitutes for accurate reaction paths calculated using adequate quantum 
chemical techniques. However, taking account of the considerable 
computational effort which is generally involved by the latter calculations, 
especially when performed at the ab initio level, local reactivity indices are 
very useful tools in interactive, or pseudo-interactive, CAMD applications 
even though their results should be taken with a pinch of salt. 

Beyond some force field models, which have been reviewed in Chapter 5, 
several approaches have been proposed in an attempt to introduce into a 
reactivity index further components of the intermolecular interaction energy 
than the MEP [18, 60, 72, 73]. Whereas some of them are based on the 
introduction of additional components (orbital interaction, polarization, etc.) 
using second order perturbation theory [72, 73], the procedure of Kahn et al. 
incorporates the exact treatment of the electrostatic term when the incoming 
reactant is a nucleophile (e.g. a hydride anion)[60]. Indeed, in this case, 
additional terms to equation (10.5) are required to evaluate rigorously the 
electrostatic energy between substrate and reactant, namely those involving 
the interaction between the electrons of the latter species with both the nuclei 
and electrons of the substrate. In any case, these developments have shown 
that in general a more refined treatment of intermolecular interactions than 
the single MEP is important as it improves the reliability of the reactivity 
index. 

We would like to present here some results obtained recently by one of us 
using such an "augmented" reactivity index (with respect to the MEP) 
developed mainly for organometallic compounds [18]. Indeed, for the latter 
systems, the MEP component is generally not sufficient to describe 
intermediate to long range interactions between a substrate S, containing a 
transition metal atom, and a reactant R because of the importance of a charge- 
transfer component arising mainly through overlap between the d orbitals of 
transition metal-containing substrate and the orbitals of the reactant [74-77]. 

To describe the reactive properties of substrate S in the presence of reactant 
R, a local reactivity index made of the S-R intermolecular interaction energy 
is used. It is expressed as a sum of several components: 

Emt(r ) = E~, (r)+ E,:, (r)+ E~,, (r) (10.9} 

where r specifies the position of the incoming reactant in the vicinity of the 
organometallic substrate, E~,, Er and E~ being electrostatic, charge-transfer 
(CT) and exchange-repulsion energy components, respectively (Figure 10.13}. 

To keep the model computationally simple, it is assumed that selection of 
the most favourable region(s) of S to be attacked by R occurs at rather large 
distances, well in advance of the transition state, so that geometrical 
distortions of S are negligible. This assumption is commonly made when 
modelling organic reactions using the MEP reactivity index. For organometallic 
reaction mechanisms, the CT component can be quite important at such 
distances, and therefore it may lead to a non-negligible Ect energy. This is 
especially true for electrophilic addition reactions, as exemplified by ferrocene 
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Figure 10.13 Molecular surface of substrate S represented with model reactant R; r is 
the point of the surface where Emt is calculated. 

where the MEP component alone predicts protonation on the ligand ring while 
the introduction of E~, completely changes the selectivity and, in agreement 
with experiment, favours the metal site (see below). 

It is important to choose a simple, though realistic, model for the reactant R, 
as the computer time required to evaluate Ein t increases rapidly as a function of 
the complexity of R. To obtain Ein t values that are dependent on the position of 
R only in the vicinity of S, and not on its orientation, two spherically 
symmetrical model reactants have been selected: a proton with a virtual l s 
orbital for the electrophile and H- hydride ion for the nucleophile. 

In the case of electrophilic attack, Eo~ is equal to the MEP of substrate S 
calculated using equation (10.6) and extended Hiickel (EH)wavefunctions. In 
the case of nucleophilic attack, it is assumed that the electrostatic interaction 
between S and the H- ion reduces to that between S and a negative point 
charge, which is obviously correct for rather large S-R distances where the so- 
called penetration integrals vanish. Several test calculations have shown this 
to be the case when R is at a distance larger than roughly 2.0 A from any atom 
of S. For nucleophilic attack, the electrostatic component is, therefore, given 
by -V(r) (equation (10.6)). 

As the calculation of electronic attraction integrals using the EH basis of 
atomic orbitals is time-consuming because they are of the Slater type, the MEP 
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can be approximated using the neglect of diatomic differential overlap (NDDO} 
scheme [78], according to which the second right hand term of equation [10.61 
becomes: 

'r-r'] 'dr' = ~ ~ ~ P ~ ' A J  Jr- r-i 
dr' (10.10) 

The first summation is over all atoms A of S. However, this requires the 
evaluation of the reduced density-matrix using orthogonalized AOs. 

As to the CT component, it is well known that organometallic substrates are 
often characterized by bands of closely spaced energy levels in both HOMO 
and LUMO regions [17]. This renders the use of frontier MOs only, in the 
evaluation of orbital or charge-transfer effects, as questionable. Instead, Brown 
et al. [17] suggested replacing the perturbation treatment by a complete EH 
calculation of the S-R supermolecule; the so-called "orbital interaction 
energy" is obtained as the difference between the total energies of the 
supermolecule and those of the separate fragments. The same approach is used 
in this model. 

As EH total energies represent fairly comprehensively the sum of covalent 
energies within chemical bonds, the S-R charge-transfer energy may be 
approximated as: 

E~, (r)= E'~ R,r)-  E'~ Et~ (10.11) 
where E'~ the EH total energy of system X calculated as: 

E'"'(X) = ~ n,~, (10.12) 
I 

n, and e, being occupation number and energy respectively, of the ith MO of X 
and E'~ being calculated for position r of reactant R. It is to be noted that 
in the case of the H- nucleophile reactant, Ec,{r) may be positive or negative as 
well, as it results from the balance of: Ill attractive 2-electron interactions 
between the HOMO of R and the unoccupied MOs of S, and Iii)repulsive 4- 
electron interactions between the HOMO of R and the occupied MOs of S [79]. 
The valence state ionization energy (VSIE) HRR Of the ls orbital of reactant H- is 
therefore a critical parameter for the calculation of the charge-transfer 
component: moving HRR downwards from a value close to the LUMO of S to 
more negative energies nearby the HOMO, i.e. transforming a soft nucleophile 
into a hard one, generally amounts to shifting Ec, from negative to positive 
values. 

Let us turn to the exchange-repulsion component. In the case of 
electrophilic attack, there is no such component in this model, as the reactant 
has no electrons. For nucleophilic attack, whereas in the case of colour-coded 
molecular surfaces the reactivity index Era, usually comprises an exchange- 
repulsion component based on the hard sphere approximation [74], this 
procedure is no longer applicable to isoenergy surfaces as there is no molecular 
envelope to prevent the reactant collapsing on the nuclei of S. A more 
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elaborate short range exchange-repulsion function is therefore needed, and a 
parametrized potential of Buckingham type is used [80]" 

E~ (r) = 828 0 0 0 ~  k~_exp RA + R. 
AeS 

where the summation runs over all atoms A of S, located in rA, kA.- being an 
energy parameter depending on atom A and H- ion, R^ and R._ being the van der 
Waals radii of the atom A and H- ion, respectively. In equation (10.13), E~ is 
expressed in kcal/mol, and the values of the parameters have been taken from 
Eliel et al. [81]. 

The reactivity index defined by equation (10.9) has been successfully applied 
to a wide range of reaction mechanisms in organometallic chemistry [18, 61, 
74-77]. Indeed, in most cases, the regio- and stereoselectivity of electrophilic 
and nucleophilic addition mechanisms is adequately predicted as 
demonstrated by the following examples. 

Ferrocene is a classical example of organometallic compound with an iron 
atom symmetrically bound to two cyclopentadienyl rings. It is known from 
experimental investigation that ferrocene readily fixes a proton in strong acids 
to give the reaction intermediate Fe(CsHs)~H § [82] (Figure 10.14). The 
protonation site is located on the metal, presumably in the equatorial plane, 
which is confirmed by recent ion thermochemistry experiments [30]. It is seen 
in Plate XVI that these experimental results are reproduced by the theoretical 
model as the five lowest minima of Era,, reflecting the five-fold symmetry axis 
of the molecule, are located in equatorial positions of the molecular surface in 
regions corresponding to an addition on metal [83]. Furthermore, a closer look 
at the molecular surface of ferrocene, coloured according to the reactivity 
index, shows that secondary minima, corresponding to less favourable 
interaction energies, are found on the exo positions of the ligand rings (i.e. 
towards the face opposite to the metal of complexed CsHs), which is in 
agreement with gas phase measurements pointing out that ring protonation is 
also a possible, but less probable, process [30]. Interestingly, reactivity indices 
based on the MEP only lead to the result that the most stable protonation site 
lies on the ligands [29, 31], which is an expected result as the electrostatic 
energy between a formally Fe(II) atom and an incoming proton is strongly 

H + . . . .  

Figure 10.14 Mechanism of protonation reaction of ferrocene. 
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repulsive. It is therefore only by adding the Ec, component to Eo, that the Ei., 
energy can be used in this case as a realistic reactivity index. 

Another example of the application of this simple reactivity index is 
provided by the benzene-chromiumtricarbonyl complex (C6H6)Cr(CO)3 (Figure 
10.15), whose structure and reactivity has been the subject of intensive 
investigations in organometallic chemistry [84]. 

It is generally accepted that metal-benzene bonding leads for this compound 
to a net intramolecular charge transfer from the ring to the carbonyl groups, 
with the result that the complex is easily attacked by a nucleophile on the exo- 
face of the ring. Plate XVII represents the E,., reactivity index calculated for the 
nucleophilic attack of this compound, which shows that, indeed, the most 
reactive site is located on the exo-face of the ligand ring. For comparison, the 
same index is also displayed for a free, uncoordinated benzene molecule. It can 
immediately be seen that, as expected, an important change in reactivity 
accompanies the complexation of this benzene molecule: whereas for an 
isolated aromatic ring one observes essentially slightly negative isoenergy 
envelopes centred on the C6 axis above and below the molecular plane 
(representative of weak van der Waals interactions), the situation changes 
dramatically for the coordinated arene. In the latter case, several imbricated 
surfaces are found at much lower energies, revealing as expected an important 
activation of the benzene ring through coordination to the electrophilic 
Cr(CO).~ group. As a consequence, the theoretical results show that the initial 
nucleophilic attack is likely to occur on the face opposite to the metal of 
complexed benzene, as has been found by experimentation [85]. The two 
examples presented here dealing with practical applications of this simple 
reactivity index indicate that, as reported for several other cases [74-77], it may 
provide a convenient tool for interpreting, and in some cases predicting, the 
reactivity of organometallic species. 

Among the other molecular properties which can be easily derived from the 
ground state wavefunction of a given compound and subsequently visualized 
as a reactivity index, it is worth mentioning the superdelocalizability, which is 
a measure of how tightly the electrons are held by the molecule at any point 
[66, 86], and the average local ionization energy, which may be similarly 
defined as the average energy needed to ionize an electron at any point [68]. 
Both properties may be used as alternatives to the MEP to correlate with pK, 
values [68] or n-aromaticity of hydrocarbon rings [87]. In addition, Parr has 
extended the concept of hard and soft acids and bases, first introduced by 
Pearson [88], to reactivity indices based on density functional theory and 

(0) 
Or 

oc / ~'"'co 
co 

Figure 10.15 Structure of the benzene-chromiumtricarbonyl complex. 
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defining local softness and local hardness [3 7]. These properties have recently 
been applied with success to modelling the reactivity of organic molecules [89, 
90]. Though the l imitat ions of such static reactivity indices are real, they may 
be used as valuable tools to describe the gross features of chemical reaction 
paths and, as such, they enjoy a growing popularity in CAMD applications. 
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Comparison of structural characteristics within a set of molecules that display 
common features is a frequent problem. It relies on the general assumption that 
similarity in behaviour implies similarity in structure. Relevant to this well- 
accepted hypothesis is, at a very simple level of elementary chemistry, the 
concept of fianctiona] groups: specific arrangements of some atoms which 
provide a common property to all molecules where they are embedded. At a 
more sophisticated level, this also relies on the pharmacophoric approach in 
drug design: a common activity within a set of compounds is due to some 
similar structural features, which are considered as responsible for that activity. 
Once these structural features {considered as indispensable for the activity to 
be present} are identified, some guidelines may be obtained for synthesizing new 
active drugs. In connection with this first phase of identifying the 
pharmacophore, the next step in drug design now largely relies on screening 
databases of 3D coordinates to define new leads that possess the right atoms in 
the right geometry. After some structural optimization, these leads provide new 
active substances. The creation of large databases of 3D coordinates, sometimes 
associated with activity data {see Chapters 4 and 7), prompted increased interest 
in methods able to determine the maximum of similarity between two 
molecules or two fragments with respect to their mutual orientation, and also 
rank candidates according to their similarity with a specific target. 

Owing to the multiple facets of chemical behaviour, the search for structural 
similarity can in fact be processed at various levels of complexity, depending 
upon the field of application. 
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Topology and topography 
A first set of applications can be efficiently carried out by using only 2D 
representations. Topology is here the main tool for finding connected 
substructures. This involves, for instance, information retrieval from the 
chemical literature and its very large files, chemical reaction indexing, etc. 
Identification of 2D structures has also been used widely in spectroscopy (for 
structural elucidation) and in quantitative structure activity relationships 
(QSAR). 

The success of topological concepts in these fields may appear surprising 
since molecular properties largely depend upon the true spatial location of 
atoms, i.e. on topography. Nevertheless, in most cases within a given 
structural area, topology (indication of the nature of the atoms and bonds 
between them)implicit ly reflects topography (i.e. the proximity relationships 
between atoms): topology is a "rubber sheet geometry" [1 ]. 

Comparison of actual 3D representations, on the other hand, is required 
when interactions between remote groups of stereochemical features are 
involved. This is, of course, the case in searching for a pharmacophore, or in 
investigating protein properties. Similar problems also occur in X-ray 
crystallography, for fitting a structure to a set of peaks in a Fourier map of 
electron density distribution [2]. 

Our main concern here being the modelling of chemical behaviour, we only 
consider the comparisons of 3D structures or fragments. 

Levels of 3D comparisons 
In 3D comparisons, various levels may be considered. The simplest approach 
only looks for atom locations. The question is, for example, to compare ligand 
points on two drugs, or ligand and site points in drug-receptor interactions. 
Such an approach uses geometrical transformations for superimposing wire- 
frame representations of the molecular frameworks to be compared. Other 
applications address the comparison of molecular volumes or surfaces, and use 
Boolean operators to identify the common parts or the unshared volumes 
between two or more molecules. Still more complex is the investigation of 
similarity for electronic properties (MEP, for instance) encoded on the 
molecular surface or even not directly supported by the molecular framework 
(location of atomic orbitals, zones of high electrostatic potential, etc.). 

Finally, also relevant to this type of problem is the estimation of the 
complementarity between a drug and its receptor. 

What similarity? 

The various aspects the molecular similiarity concept may address can be 
illustrated by the following examples. Let us first consider the pair of 
analgesics, R4238 and R6372, of largely different efficiency (Figure 11.1). 
Although the structural formulae are quite similar (they differ only by a 
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Figure 11.1 Analgesics R4238 (a) and R6372 (b)which have activities of 10 and 180 
respectively, with reference to morphine (activity of 1). In (c) the two molecules are 
superimposed to illustrate their similarity. 

methyl group), their geometries are definitely different; the methyl group 
inducing in R6372 a tilt of the phenyl ring [3, 4]. 

Conversely, the pteridine tings of dihydrofolic acid and methotrexate look very 
similar (Figure 11.2). However, there is crystallographic evidence that they bind 
differently to dihydrofolate reductase: the bound conformation of methotrexate 
corresponding to a 180 ~ flip of the ring. In such a position, the distributions of 
the MEP of the two molecules now appear very similar [5-7]. 
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Figure 11.2 Model fragments of dihydrofolic acid and methotrexate. MEP pattern for 
R = CH~. Dotted lines correspond to negative MEP values regions (attractive for an 
electrophile) (from Gund et al. with permission [7]). 

Computer  graphics, with its interactive capabilities, soon emerged as an 
attractive tool for displaying molecular  shapes, or superimposing active 
molecules to detect their common parts. Thanks to the power of analysis of 
the human  eye, such a visual inspection is very efficient. However, it may 
become cumbersome when a large set of molecules has to be examined [8], 
and automated detection allowing efficient t rea tments  wi thout  any a priori 
hypothesis is desirable. This relies on the definition of quanti tat ive 
s imi lar i t y  indices  for evaluating the degree of overlap between given 
molecular  shapes and the detection of common  patterns. A non-visual and (if 
possible) quanti tat ive est imation of how one molecule is similar to another 
is also highly desirable in view of QSAR applications: for instance, for 
determining the best way in which to superimpose two molecules, or for 
interpreting how a biological activity common  to a set of compounds may be 
related to the structural  features they share. Such automated approaches are 
particularly useful if the molecules to be compared are not closely related. In 
such cases, it may be difficult to decide how to superimpose two ligands 
with no obvious similar geometry so as to find common  binding interactions 
to the same receptor pocket. Quanti ta t ive similari ty indices are also highly 
desirable when screening large 3D databases in the search for leads 
containing given structural features. Ranking the hits according to their 
similarity with a known drug (or a fragment of it) allows one to select those 
candidates that  are more likely to be good starting points for the design of 
new drugs. 
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Before exploring the more complex problem of comparing structural or 
property shapes, we first turn to geometrical comparisons, that is comparison 
of the atom frameworks. 

11.1 GEOMETRICAL COMPARISONS: MOLECULAR 
SUPERIMPOSITION 

Comparisons of the atom frameworks in fact encompass different activities. 
Frequently, there is some evidence about the atoms that correspond in the two 
structures under comparison. Besides the more naive superimposition of two 
molecules, where the anchoring points are fixed, the question is mainly one of 
finding the best geometrical transformation in order to superimpose them 
together as closely as possible and evaluate their degree of similarity (in other 
words, to evaluate how good the fit is). 

In more complex cases, such as the comparison of "non-obviously similar" 
molecules, it can first be necessary to find the best atom-atom 
correspondences. 

Also of relevance here, two related problems deserve special attention: 

�9 either searching for the existence of a given fragment (substructure)within 
a set of compounds: common substructure search (CSS); 

�9 or identifying the greatest common substructure: maximal common 
substructure search (MCSS). 

Such questions arise, for instance, when screening a 3D database, searching 
for molecules containing a given pharmacophoric pattern, or conversely, 
deriving a common atom arrangement (a putative pharmacophore)shared by a 
set of active molecules. 

For such operations, computer programs allow detection of the presence of 
common patterns, and the evaluation of similarity indices by least squares 
fitting techniques and interactive computer graphics [9-11 ]. 

11.1.1 Crude approach 

When the anchoring motif is known, a crude superimposition of two 
structures can be easily carried out. Given two triplets of corresponding atoms 
(a, b, c) in  molecule A and (r, s, t ) in  molecule B, the following steps can be 
performed (Figure 11.3): 

�9 bring atom r on to atom a by translation: the second triplet now becomes 
a,s', t'; 

�9 superimpose planes a, b, c and a, s', t'." this superimposes the normals n, n" 
to these planes by rotation along an axis perpendicular to them 
(intersection of the two planes). The unit vectors along the normal are: 
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Figure 11.3 Superimposition of two anchoring triples. 

n = ( a b  x a c ) / ( a b  ~ + a c  ~ )0.s 
n ' =  (as 'x a t ' ) / ( a s  '~ + at")~ 

The axis of rotation is given by n x n', and the angle of rotation by: 

cos 0 = (n. n ' ) / (n '  + n"  )o.~ 
sin 0 = (n x n') /(n" + n ' )~  

Triple a, s" t" n o w  b e c o m e s  a, s "  t"; 
superimpose directions as"  and ab by rotation along n. The rotation angle 

is given by: 

cos �9 = (as". ab) / (as "~ + ab ~ )0.s 
sin �9 = (as" x ab) / (as "~ + ab 2)~ 

In simple examples, this approach seems attractive since it easily allows for 
visualizing gross comparisons. However, it requires some initial assumptions 
as to anchoring points for superimposition, and in the preceding form, it 
privileges first point a (r), then b (s)over c (t), so that  one cannot be certain that  
the best fit is obtained; more sophisticated methods (implying no a priori  
hypothesis) are thus needed. (See Plate XVIII a.) 

11.1.2 Finding the best transformation 

Comparing the geometrical features of two molecules is often carried out by 
displaying the a tom frameworks superimposed as closely as possible. In 
contrast to the problems encountered in " common  substructure" searching, 
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where the aim is to identify the corresponding atom pairs, here one knows 
what atom of the first molecule is associated with each atom of the second 
molecule. Therefore, the problem is to find the rigid body translation and 
rotation that give the best match between the two structures, that is which 
minimize the rms distance between corresponding atoms [12-18]. 

In other words [13-15]: let a., b., (n = 1 . . .  N) be the position vectors of two 
sets of atoms (respectively molecules A and B). We wish to determine the 
translation t and rotation r that convert the coordinates b,. (i - 1, 2, 3) into: 

3 

b," = E r,,b,~ + t, 
! 

so as to minimize the residual (rms difference value in fitting the super- 
imposed atoms): 

1 )2 
E = - 

J,n 

w. being the weight assigned to atom n. 
It is easily shown that the best translation t is that which superimposes the 

centroids of both molecules. So, we will subsequently consider only rotations 
between two shapes with a common centroid (supposed to be at the origin of 
the coordinate system). 

The determination of the rotation matrix has been approached in various 
ways. The first attempts, applying rotation angle procedures, have been 
superseded by more efficient methods using matrix calculations, Lagrange 
multipliers or quaternions optimizations. We only give brief guidelines here 
about the principle of some of these methods (for details the reader is referred 
to the original papers). 

By expanding the preceding equation, we get: 

E = (A + B)+ v 

where" 

1 
A - -~ E w,a~in 1 E w~b" B=-~ , ~  

Since B does not vary, when molecule B rotates around its centroid, these 
quantities can be evaluated once from the initial data, and the problem 
becomes the minimizing of the reduced objective function -v: 

V = E wob,'a,n 
i ,n 
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M a t r i x  t r e a t m e n t  

In a first group of methods  [13-15], the rotat ion matr ix  R can be derived from 
two 3 x 3 matrices U, V with: 

as defined as" 

U, = E W'. bi~ ajo 
11 

E " v,  = w~ b m aj~ 
rl 

V f R U  

(from initial coordinates) 

An iterative solution has been proposed [13, 15] by successive rotations. 
Consider the rotat ion r followed by a small  additional rotat ion 0 about the 
direction 1. Resolving the vector b' for any a tom before the notat ion into a 
component  parallel to 1: (l.b')l and a perpendicular one- lx( l  x b'), it can be seen 
that, to the second order, the vector b' becomes (after rotat ion 0): 

b' + (O x b')+ 1/20 x (O x b') where O = 10 

The corresponding change of the reduced objective function is: 

fie = -gO + 1/20' TO 

where vector g = Z~ Tar. (b'~ x a~ is the couple that  will  be produced by a force 
wo (a. - b'.) acting at each atom b'. as it was attracted by its guide point a., and 
O - co lumn vector and O' = row vector (transpose). 

In terms of U and V matrices, the couple g is given by the an t i symmet r ic  
part of V (for instance, g, = V~- V3~...). 

T is the matr ix  of the second derivatives, wi th  e lements  T, given by: 

T, = v ~, - 1/2(V, + V, ) 

wi th  v = V~ + V.  + V33 

In other words, the change in the reduced objective funct ion can be written" 

fie = - G  sin 0 + H(1 - cos O) 

which  becomes for small  0 

3E = - G 0  + (1/2)H00 

G -- g.l is the downhil l  gradient about direction 1, and: 

H = E l i T ,  1 j 
# 

is the second derivative. 

Searching for the rotat ion matr ix  R (finding the m a x i m u m  of v) now turns to 
make  G disappear and H be positive for any further direction of motion.  This 
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can be carried out by the usual minimization procedures (for instance, conjugate 
gradient minimization). The min imum along direction g is directly obtained by: 

1 

sin 0 - G /(G 2 + H ~ )~ 
1 

cos 0 = H / ( G  2 + H  2)~ 

In practice, a set of successive rotations is carried out about axes parallel to the 
couples g at the start of each cycle: on typical examples, about 5-8 iterations 
are needed to obtain the best match {down to a last rotation about 10 -'~ tad.). 

Analytical solutions - with diverse variants - have also been proposed, 
giving the rotation matrix R directly. 

From the preceding matrices U, V {with V = R U), the solution sought can be 
writ ten V = (LrU)'", where Lr represents the transpose of matrix U. Once V has 
been found, rotation matrix R is calculated as: 

R = (u'u) u -' 

McLachlan [14] used a 6 x 6 partitioned matrix built from U and U', whereas 
Kabash [12, 12a] introduces Lagrange multipliers to find a direct solution. 
Another approach uses the two matrices" 

M,2=A'B and M , , = B ' A  

where A and B represent the (n x 3 )mat r ices  of the atom coordinates in 
molecules A and B, and consider matrices /VI~,/Vi,~ and /VI,,/Vi~,. These two 
matrices have the same set of eigenvalues. Their diagonalization leads 
respectively to matrices D,, and D,~ of normalized eigenvectors, from which 
the best orthogonal transformation R for superimposition is derived by: 

R = D21D'l~ 

Rotation angle method 

An efficient algorithm was recently proposed by Zong Jie Liu and van 
Rapenbusch [16, 16a]. The principle is to express the objective function to 
mimmize in terms of three rotation angles, and simplify its expression by first 
adjusting the initial positions of the two sets of coordinates. 

The reduced objective function v is expressed as: 

v = s o% r. (0, 0 ,  Q) 

where r, (0, ~, fl} defines the rotation sought, and the ~, are constants 
depending upon the initial positions of A and B. (The ~ ; - -  E, a~ b~~ are 
homologous to the u. elements with wo = 1.) 

The position of B can be adjusted by a preliminary rotation that cancels three 

~M. Petritjean. 
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(at least) of the nine a,  coefficients, and consequently reduces v to a simpler 
expression that  can be easily minimized  by least squares t reatment .  

Besides speed, it can be noted that this algori thm is able to find either (or 
both) the m i n i m u m  value of the objective function and/or the rotation matrix, 
wi thout  remaining trapped in a local m i n i m u m .  

Q u a t e r n i o n s  

Quaternion-based methods have also been proposed [18]: invented by W. 
Hamil ton in 1843, quaternions can be thought  of as quadruplets of real numbers,  
corresponding to a scalar ps and a vector p. They were soon used to parameterize 
rotations, and after a long spell of oblivion, proved very useful for computer  
processes: computers  work faster wi th  algebraic rather than tr igonometric 
functions, and for quaternions the derivative space is cont inuous [18]. 

Given a pair of a tom vectors, b and b', derived from b by the rotation 
described by the quaternion Q, so that: 

b '=Q-~bQ or Q b ' = b Q  

one obtains a set of 3N equations (for an N a tom comparison) that  can be 
solved by a least squares procedure, leading to the unknowns:  the rotation 
angle 0, and the director cosines 1, rn, n of the rotation axis [17]. 

Remark: elements of quaternion algebra 
For a rotation 0 around an axis (unit vector d, director cosines 1, m, n), 
corresponding vectors are related by: 

b' = Q-lbQ 

where: 
Q = (cos 0/2 + sin 0/2)d can be expanded along three orthogonal unit  vectors 

(i, j, k)as" 

Q = cos 0/2  + 1 sin 0/2 i + m sin 0/2 i + n sin 0/2k 
Q-' = cos 0 / 2 - 1  sin 0 / 2 i -  m sin 0 / 2 j -  n sin 0/2 k 

For each pair of corresponding atoms [x, y, z), (x; y;  z] in A and B, the 
rotation associating them is defined by ( b ' -  b) = tan 0/2 d x (b + b'), or in 
Cartesian coordinates: 

i j k 
(x - x')i + (y - y')j + (z - z')k = tan 0/2 1 m n 

x + x '  y + y '  z + z '  

This leads, for N pairs of atoms, to a system of 3N equations (with t -- tan 0/2): 

mt(z  + z ' ) -  nt(y + y ' )=  x ' -  x 
- l t (z  + z')+ nt(x + x ' )=  y ' -  y 
lt(y + y ' ) -  mt(x  + x ' )=  z ' -  z 
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This system can be solved by the usual least squares procedures (AX = H 
X = (A'A) -' A~)  giving the unknown lt, nat, nt. Adding the squared values 
determines t a. Then 1, m, n are easily obtained. 

Although such comparisons are generally carried out between a pair of 
molecules, more complex cases may occur. This happens, for example, when 
searching for a pharmacophoric pattern within a series of active molecules, the 
objective here being to superimpose in the best way a set of related molecules 
to extract common atoms responsible for common building interactions. 
Obviously, the comparisons can be camed out by choosing a reference 
structure and mapping on to it the other in a series of pairwise 
superimpositions. However, this process does not guarantee an optimal fit for 
any pair of molecules differing from the reference structure. To avoid this 
stepwise process, Kearsley [18] proposed using quaternions to directly find the 
optimal superimposition within the family. The residual to minimize here: 

n-i  n ns 

Q/x' 
i-I )-i+1 k 

where Q = rotation operator and x = atom position. 
The first two sums are over the unique pairs of structures (with indices i 

and j), the third is over the number (ns) of atom-atom associations between the 
structures. 

Flexible f i t t ing 

The above approaches are limited to motions of rigid bodies, and consider only 
geometric criteria to characterize the fit. When some conformational 
flexibility is allowed for the inspected molecule to map onto a rigid target, one 
may imagine that the fit obtained using the more stable (favoured) conformer 
may be improved with a slightly distorted conformation, at the price of a small 
energetic expense. This point was recently considered by Venkatachalam et al. 
[19], who proposed introducing, in the objective function, a part related to the 
energetic cost: 

objective function -- RMS + a (Energy) 
(molecule A, molecule B) 

where "Energy" represents the energetic expense for distorting the flexible 
system. Setting the adjustable coefficient a to zero reduces the problem to the 
preceding rigid body motions. Conversely, when a is large, it turns to an energy 
minimization for the flexible molecule. 

A t o m  correspondence be tween  (dissimilar) molecu les  

When the structures to compare are not close neighbours, the correspondences 
between atoms are not always obvious. The algorithm described by Danziger 
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and Dean addresses this problem, and proposes the best solution by a 
systematic search through all possible pairs associating one atom in molecule 
A and one in B [20]. Candidate solutions are generated by a recursive-descent 
tree-search. To avoid a combinatorial explosion, partial candidates which 
cannot lead to a good solution are discarded, and the branches stemming from 
them are suppressed. 

A first obvious way of pruning was to take into account the nature of the 
atoms. In the example treated, only hydrogen bonding atoms are considered 
and separated into H-donor, H-acceptor, or both. 

The second pruning criterion relies on the rms value Ad of the difference 
distance matrix [DDM) comparing interatomic distances in molecule A to 
those in molecule B: 

Ad" = 2 DDM" 
/=1 '= "+ 

"I / n ( n  - 1) 

where n - number of correspondences and DDM is given 

DDM, = [ D M ^ . -  D M ' .  I 

by: 

where DM^, and DMB, are the elements of the distance matrix for molecule A 
and B [distance between atoms i. j in A, and between corresponding atoms in 
B). 

Although non-differentiating between mirror images, Ad is here generally 
preferred to the rms difference value of the corresponding atom positions, 
{when fitting the superimposed molecules), this criterion being much slower 
to evaluate. The algorithm also allows for the selection of the number of 
correspondences (a preset number of null correspondences is permitted} and 
the tolerance threshold accepted for the fit. Interestingly, a caveat is put on 
"blind searching" of atom correspondence: a very good superimposition of 
some atoms can be attained which is of no sense as to a possible way of 
common binding if steric fitting is poor (Figure 11.4). 

Figure 11.4 A good four-centre correspondence is obtained but steric fit is low. The 
centroids of the two molecules are not on the same side of the least squares plane 
through the corresponding atoms. 
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A similar problem to retrieving corresponding atoms also emerges in the 
protein field. When two proteins have a similar shape in part of their structure, 
they can be superimposed by choosing certain sets of atoms as a guide-point for 
the fit. However, this choice is not necessarily the best one, and a more 
systematic approach is needed for comparing large scale organization [14]. In 
the approach of McLachlan, a comparison is carried out between zones of 
about 50 residues. Once the similarity index ("fitting distance")has been 
calculated, the problem is updated, deleting the first atom and adding atom 
N + 1. Speed is therefore essential, since comparisons may involve as many as 
106 least squares fits. Results can be displayed in a plot of distances between 
carbons of molecule A and the rotated molecule B for matched lengths of chain 
. . .  a representation somewhat similar to an Ooi contact map (but referring 
here to two distinct proteins)[21]. 

This method was applied to define chymotrypsin's structure [14]: this 
enzyme appears as "built from two similar domains, each of which is a 
hydrogen-bonded barrel". Both domains have highly symmetrical structures, 
and shape comparison methods strongly suggest that the barrels have evolved 
by gene duplication: a closely linked dimer of two intertwined half-domains 
becoming united into one domain. The enzyme then evolved by a second 
duplication with a second dimer [ 14]. 

11.2 COMMON SUBSTRUCTURE SEARCHES 

Identifying 3D features common to a set of molecules addresses many research 
areas: chemical documentation (retrieval of substructures from large files of 
structures), database exploitation in X-ray crystallography (or in spectroscopy, 
fitting a structural fragment to spectral signals), pharmacology (in QSAR, or 
search for a pharacophore). Various approaches have been proposed for 
automatic identification of a common pattern within a set of molecules, either 
searching for a given common substructure (CSS) or looking for the maximal 
common substructure (MCSS). 

Automated determination of CSS or MCSS avoids a priori hypotheses as to 
some common atoms. Indeed, these methods specifically generate such 
hypotheses. Furthermore, the spatial location of atoms is the important 
parameter with no acknowledgement of topology (i.e. independently of 
whether the atoms comprising the substructures are connected). The question 
is similar to the problem of atom correspondences addressed by Dean et al. 
[20], but here one deals with the recognition of a 3D mot i f  (given some 
tolerance about interatomic distances) but with no acknowledgement of any 
similarity index quantifying the "goodness" of the geometrical fit. 

Whereas, in geometrical transformations, Cartesian coordinates are used for 
interactive molecular superimposition, in automated substructural searches, 
reasoning on pairwise interatomic distances is generally preferred. This clearly 
avoids problems due to the orientation of the molecules in respect to the 
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reference axes. It also allows for an easier treatment of tolerance thresholds to 
cope with small geometrical distortions, and processing is made easier. Note, 
however, that Lesk's algorithm works in (x, y, z)coordinate space, although this 
appears to be very time consuming (see below). 

We now briefly present some of the most commonly used approaches to CSS 
search. Note that the examples given below consider only atom positions, 
without considering their nature. This constitutes the worst case, since in 
practice examination of atom types (H-bond donor or acceptor character for 
example) usually reduces the number of possible matches. 

11.2.1 Crandell and Smith's algorithm 

Crandell and Smith's algorithm [22] uses an iterative process for finding either 
the maximal common 3D substructure within a set of structures or all the 
common substructures of a given size. 

In the growing step, the algorithm starts with an N-atom common 
substructure and expands it to identify all common fragments of size (N + 1) 
atoms. At each step, one checks that any newly generated substructure is 
common to the whole set (otherwise it is discarded for further phases). 

The basic steps of the algorithm can therefore be summarized as: 

�9 creating the initial distance table; 
�9 setting N-- 1 (or any given common substructure); 
�9 growing substructures of (N + 1) atoms, expanding the N-atom substructures 

emanating from the preceding iteration; 
�9 obtaining a canonical description of these substructures; 
�9 comparing these, and identifying those which are still common to the 

whole set of molecules (if none, stop); 
�9 amending the distance table and going back to the second step. 

This algorithm deserves some comment: 

�9 To accommodate small geometrical variations, true interatomic distances 
are gathered in clusters (with a usual tolerance value of about 0.09 A), and 
the process is carried out on (integer) codes identifying these clusters for 
each iteration step. Amending the distance table encodes-1 to all pairwise 
atom distances, which cannot be elected as common to all molecules in 
the following steps. 

�9 When various substructures can be generated in the growing step (adding 
several different atoms), the growth is processed through a breadth-first 
tree search, since after each step, all the substructures generated are 
examined and compared with those originating from the other molecules. 
Only substructures that all molecules have in common survive. 

To make these comparisons easier, each substructure generated is given a 
unique (canonical)name: for each atom pair a triplet is formed, consisting of 
the two atom types and the relevant entry in the distance table. 
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11.2.2 Clique-detection algorithm 

This approach relies on a topological perception of the molecular structure, 
and uses graph theoretical procedures to identify common features [23]: a 3D 
molecule is regarded as a graph, where the nodes and edges are labelled 
according to atom types and interatomic distances (Figure 11.5). 

Given the graphs associated with a chemical structure A {atoms a, b . . . ) a n d  
a pattern P {atoms p, q . . . ) ,  a correspondence graph C is built by the following 
process: 

�9 Creating the set of all pairs of nodes (one from each of the two graphs A and 
P) of the same type. 

�9 Building the correspondence graph C. Its nodes are the pairs from the 
preceding step. Two nodes (A,P,}, (AjP~)are connected in C, if the edges A,A, 
and Pd~ have similar values (similar distances). 

STRUCTURE PATTERN 

P" , .... 1' ,.r 

ap 

er  bq 

eq br 

dr  

dq cr 
dp 

Figure 11.5 Clique-detection. Detection of the clique (ap, bq, c r ) i n  the 
correspondence graph built from the 6 x 3 possible pairs (structure atom-pattern atom). 
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The maximum common subgraphs correspond to the cliques of the 
correspondence graph {clique = a subgraph in which every node is connected to 
every other node, and which is not contained in any larger subgraph with this 
propertyl. 

Among the various algorithms tested, the most efficient implementation 
was obtained with the widely used method of Bron and Kerbosch [24]. 
Applications can be found elsewhere [25, 26]. 

The clique-detection algorithm allows for the identification of a common 
substructure between two molecules, and can be used for retrieving 
substructures consisting of many atoms. However, in its initial 
implementation, extension to a set of structures, although theoretically 
feasible, greatly increases the size of the correspondence graph, and the clique- 
finding procedure appears quite impracticable if more than two molecules of a 
realistic size are to be processed. 

Brint and Willett [27] suggested some enhancements to both the Crandell 
and Smith and clique-finding algorithms: incorporating in the clique-finding 
algorithm the concept of "seed pattern" [a starting point for the growth of the 
Crandell and Smith methodl that must be present in the clique, or other user- 
defined structural constraints, have been proposed as an attractive solution to 
increasing efficiency [27]. 

11.2.3 Lesk's algorithm 

Lesk's algorithm [2] favours a more geometrical approach, directed rather 
towards the search for a pre-defined structural moiety {Figure 11.6}. 

The pattern and structure are each defined by a list of atomic coordinates 
and identifiers which specify the type of each atom. For an atom in the 
structure proposed as a candidate to be identified with one centre of the 
fragment, we check whether its environment in the structure is the same as in 
the fragment {proper type and distances}. In this way, we can determine sets of 
atoms in the structure candidate for congruence {candidate to superimposition 
with the fragment through rotation/translation operations). Structure atoms 
which cannot match to any pattern atom are removed and the distance table of 
the structure is updated. The process is repeated until no more atoms can be 
discarded. 

Once a set of atoms of the structure has been elected, one has to test these 
points for congruence with the pattern {within some tolerance}. 

From the examples given by Lesk, it appears that the required CPU time 
varies as the fifth power of the number of atoms in the structure {if only the 
atom type is considered). The score would presumably be better with more 
discriminating chromatisms. 

However this type of method {exhaustive generation, then filtering} is 
{inherently) subject to problems of combinatorial explosion. Geometrical 
transformations needed for testing congruence are also a burden on computer 
time. 
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STRUCTURE 

Atom distance 

a 1 0 1 
b 1 1 0 
c 0 2 1 
d 1 1 0 
e 1 0 1 
f o o 1 

Updated table: 

Atom distance 

P A T T E R N  

q\ 

P" '1' r 

Atom distance 

p 1 0 1 
q 1 1 0 
r 0 1 1 

No possible match for f. 
f is deleted. 

Atom distance 

a 1 0 1 No match for e: a 0 1 
b 1 1 0 e deleted b 1 0 
c 0 2 1 n e w  table c 2 1 
d 1 1 0 d 1 0 
e 1 0 0 ~ 

. , . 

Figure 1 1 . 6  Lesk's algorithm. 

11.2.4 Set-reduction algorithm 

This algori thm proceeds by examinat ion  of ordered a tom pairs [26] and 
involves the successive e l iminat ion of s t ructure  a toms thanks  to an analysis of 
their  neighbourhood and connectivity.  

First, a list of all a tom pairs in the pat tern  is created. To these pairs are 
associated all the pairs from the s t ructure  so that  D(A,  Aj) = D(P~, P~), within  a 
tolerance value. 

The presence of A, Aj in the list P, P, implies that  A, and Aj are respectively 
corresponding to P~ and P~. To confirm this hypothesis,  one tests all the lists 
associated wi th  pairs of P and containing P~. The only A pairs to be retained are 
those associating A; to P~ at least once in each list. This step is repeated unt i l  
no more  e l iminat ion  can be carried out. As the algori thm works by iteration, 
no combinat ion  problems occur {Figure 11.7). 
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STRUCTURE 

f a / / a  x ~ 7 1' ....... 

Pattern pair p-q q-r p-r 

Structure 
pairs 

a-b b-c a-c 
b-a c-b c-a 
e-d c-d e-f 
d-e d-c fie 

Pattern pair p-q q-r p-r 

Structure a-b b-c a-c 
pairs e-d c-b e-f 

c-d 
d-c 

PATTERN 
- / q ~ B  

PJ , ~r 

match for p? 

from the first column 
candidates: a, b, e, d. 
b,d cannot match since 
absent in the 3rd column 

looking at r from 2nd 
and 3rd column: 
r matches with c 

o . . 

Figure 11.7 Set-reduction algorithm. 

11.2.5 Ullman's algorithm 

The subgraph isomorphism method of Ullman [28] uses distance matrices. 
Given the two distance matrices, for respectively the molecule A and the 
pattern P, one builds an association matrix. For two nodes, A, and P,,, M~, = 1 if 
and only if, for any P~ neighbour to P~, it exists Aj neighbour to A, so that: 

d(A, , A, } = d(Px , P,, ) 

The association matrix M will be modified in successive steps according to the 
rule: 

given P. and A~ with M,.. - 1 
for any P. of P so that d(P., P~)- D 
it exists Ak of A so that 
MAk, P~ * d(A~,, A~) - D 
otherwise M~.. = 0 for the next iteration. 

In other words, ff A~ has to match  P., any neighbour to P. must  have an 
equivalent in A (Figure 11.8). 

The final matrix is obtained when each row contains a single 1, and each 
column contains no more than a single 1. 
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STRUCTURE 

Distance matrices: 

Structure 

e d b a 
e 0 a X X X Y 
d a 0 X X ~ X 
b X X 0 a 13 X 
a X X a 0 7 X 
c x ~ ~ ~ o x 
f ~ x x x x o 

Logical matr ix  of association M: 

1 0 0 1 0 0 
0 1 1 0 0 0 
0 0 0 0 1 0 

P A T T E R N  

o.-/", .'\r 

Pattern 

p q r 
p 0 a 7 
q a 0 
r 7 ~ 0 

The 1 st line means  that  node p of the 
pat tern can ma tch  nodes e or a of the 
structure.  

Iterations: 

i j 
1 1 

1 4 

2 2 

2 3 

3 5 

x D(i, x) y M{x, y} MIi, j) 
2 a 2 1 
3 7 6 0 M(1,1)-- 0 
2 a 3 1 
3 y 5 1 M( 1, 4) No change 
1 a I 0 
3 ~ s 1 M{2, 2} -  o 
1 a 4 1 
3 ~ 5 I M(2, 3) No change 
1 7 4 1 
2 [3 2, 3 0, 1 M(3, 5) No change 

In each step, i, j are first assigned to the rows and co lumn numbers  of non-zero M 
elements .  Next  x are taken  from the pat tern  matr ix  before y is found from the 
structure.  

Final matrix: 

p 0 0 0 1 0 0 
q 0 0 1 0 0 0 
r 0 0 0 0 1 0 

Figure 11.8 Ullman ' s  algori thm. 
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This procedure, robust and not suffering from combinatorial problems, 
seems very efficient to retrieve a given substructure, but was not proposed to 
search for the maximal common substructure. 

In fact, clique-detection, Ullman's and the set reduction algorithms can be 
viewed as very similar approaches: a link between nodes in the graph of 
correspondence is equivalent to the association of an atom pair of P with a pair 
of molecule A in the set reduction. The clique describing the substructure 
identified is no more than the final table of pairs in the set reduction (Figure 
11.9). 

Some comparisons about the applicability and efficiency of these varied 
approaches have been carried out. Crandell and Smith's approach is very 
demanding both on CPU time and storage requirements. However, it seems 
faster than the clique-finding algorithm for searching for a small MCS within 
large molecules. 

T 

.. ! 
lap, bq) , bp} 
(bq, cr} (br, cq) (cq, dr} 
(dp, eq) (dq, ep) (ep, fr) 

i 

Pq 
ab 
ba 
ed 
de 

q~ 

bc 
cb 
dc 
cd 

pq 

ab 

ed 

ql 

bc 
c~ 
d~ 
Cg 

Figure 11.9 Analogies between 
algorithms. 

p r  

ac  

ef 

S bq 

ap 

P pq 
S ab 

clique-detection, 

Pq 
ab 
ed 

qf 
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Systematic tests were carried out, searching for the presence of fragments of 
3-15 atoms in diverse structures containing from 14-60 non-hydrogen atoms, 
or for the presence of a given pharmacophoric motif created from a subset of 
the Cambridge database. According to Brint and Willett [26], "The Ullman's 
algorithm is by far the quickest and its advantage increases with an increase of 
the size of the pattern." It appears as an "algorithm of choice for 
pharmacophoric pattern search." On the other hand, Lesk's method and set- 
reduction are broadly of comparable efficiency. However, they were sometimes 
unable to reduce the number of structure atoms to combine. So, when 
processing large molecules (such as proteins) the clique-detection and Ullman 
methods are difficult, owing to the size of the distance table, and Lesk's 
algorithm seems to be the best for substructure searching in macromolecules 
when it does not suffer from combinational problems [26]. However, note that 
the clique-detection algorithm has recently been applied by Artymiuk et al. to 
identify patterns of cx helices and 13 strands in 3D space that are common to a 
pair of proteins [29]. 

11.2.6 Pharmacophoric matching in large files 

The identification of a given pharmacophoric pattern in large flies has 
produced an explosion in interest over the last few years in view of the huge 
amount of data to process [a problem also encountered when searching for 2D 
substructures in the large spectroscopic or bibliographical databases}, and 
prompted the development of various substructure searching techniques for 
the retrieval of 3D fragments [11, 26, 30, 31]. 

Substructure searching is usually implemented in a two-stage algorithm: 
first, an initial screen has to eliminate a large number of molecules that 
obviously cannot contain the query substructure. Then, only those molecules 
passing this filter are submitted to the complete subgraph-isomorphism search, 
the very time-consuming step of the search. The first screening is generally 
carried out via bit-strings encoding the more characteristic features ifor details 
see, for instance the organization of the Cambridge database in Chapter 41. 

For 3D databases, the screening criteria usually rely on interatomic 
distances. To limit computer time, Willett et al. [30, 32] proposed adding a 
third stage in this retrieval methodology: the first step involves a rapid bit- 
screen matching operation. It looks for the presence {or absence} of 
interatomic distances within certain preset ranges. These have been 
previously defined by analysing the occurrence of distances in the database. In 
the second step, all interatomic distances in the selected candidates are 
generated to ascertain that all the distances in the query are present in the 
candidates. The final search, using the set-reduction technique, determines 
whether these interatomic distances are in the correct geometrical orientation 
to each other. The examples quoted, searching for some well known 
pharmacophoric patterns within a subset of the Cambridge database (about 
12,000 compoundsl indicate that, typically, only about 5% of the file needs 
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the detailed geometrical search (third step). This corresponds to a large 
decrease in the computational task. 

The efficiency of the screening stage, however is lowered when only a few 
distances are known for the query. To overcome this drawback, Willett et al. 
proposed using "smoothed bounded distances", a technique derived from 
distance geometry. For the query, the usual distance matrix is built (see 
Chapter 7) and smoothed (removing inconsistencies) by the triangle inequality. 
This allows for the determination of possible ranges for some missing 
distances in the query. Selected tests show that the process may considerably 
increase the efficiency of search. 

Willett et al. [33-35] stressed the point that, although the notion of 
similarity is inherently a little subjective, a useful index would be one in 
which "the calculated similarities in structure mirror the similarities in 
activity." They also devoted special interest to the effectiveness and 
computational requirements when screening large databases. Their approach 
relies on distance information, the target and the candidate molecule being 
represented by their interatomic distance matrices. This type of search sets the 
problem of ranking candidates and therefore quantitatively estimating 
molecular similarity. The proposed process compares, in a first step, the 
environment of each atom in the first molecule to that of each atom in the 
second, to determine the resemblance between each possible pair of atoms. 
This defines an a t o m - m a t c h  matr ix ,  the elements of which encode the 
similarity between pairs of atoms. This matrix is thereafter used to establish 
what atoms are most alike. The sum of the so established atom-atom 
similarities gives an evaluation of the overall 3D similarity. Other 
comparisons were carried out using the frequency distributions of the 
interatomic distances, possibly separating carbons and heteroatoms, or the 
count of distances that are identical in the two structures, but they seem to be 
less effective. The search of the maximum common substructure (MCSS) 
would be the best method, but it is very demanding on computational 
requirements, so that atom mapping appears as the most cost-effective 
technique [33]. Similarity evaluation can be improved by taking into account 
some atom characteristics: in other words, mapping can only occur for atoms 
of the same "type". Hydrogen bonding ability and electronegativity, on the one 
hand, and charge and van der Waals radius on the other, were used to 
distinguish 18 different atom classes. 

A comparison of this 3D search method with a 2D similarity search was 
performed on a database of ca 4500 structures. It leads to outputs very different 
from each other, and shows some complementarity of these two substructure 
searching systems. Some 2D candidates, though containing the same 
substructures, bear little overall similarity to the query. Conversely, 3D 
candidates can exhibit strong topographical similarities but look very different 
from the target in terms of topology (Figure 11.10). 

The concept of fuzzy matching (only some of the query features need to be 
located in the answer), and the use of a similarity index to rank the retrieval, 
was extended to molecular properties, bearing in mind the exploitation of the 
Chemical Abstract Service 3D databases [36]. An exploratory approach, the 
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Figure 11.10 Differing first two top hits for the same target in 2D and 3D searches 
{from Pepperrell et al. [34]}. 

Substance Similarity Search Modeller {SSSM), works on a database comprising 
about 6000 substances, encoded over 3000 features: 161 molecular property 
features, 663 2D, 2230 2D/3D and 118 3D features (maximum figures). They 
comprise global or local molecular properties {heat of formation, ionization 
potential, partial atom charges, etc.), topological indices, path lengths between 
atoms, flexibility indices, and so on. The description is completed by atom 
triangles generated from the 3D coordinates {approximately 2500 per 
substance, amounting to about 15 million for the whole database). It is hoped 
that triangles should be better than atom pair distances in detecting the shape 
and size similarity as they contain more information. 

The raw data are reduced (using binning} into "feature definitions" which 
are given numerical values, and subsequently used by the search system 
software: for example, atom triangle characteristics (interatomic distances, 
area, and perimeter counts} are specified within about 1800 features. The 
profiling of features is automatically performed by the system for the target. 
Scoring methods rely on the presence/absence criterion or the Tammoto 
coefficient [33-35]. Searches can be performed on the entire molecules, or on 
fragments {substructures) of them. It is also possible on any combination of 
features: results indicate that fuzzy-match searching on molecular property 
features detects chemical or isosteric similarity, and that atom triangle 
features convey important information about shape and size similarity. 
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11.2.7 Trends and new developments: parallel processing, 
neural networks 

Parallel computers have shown greatly increased speed capabilities which have 
proved very useful in the field of numerical computation. They also seem 
likely to offer attractive solutions in the screening of large databases for 
processing the large amount of non-numerical data stored. 

In usual, sequential computing, operations are carried out one after the 
other, one at a time. It easy to imagine that for certain repetitive operations, 
for example updating an array, performing the same operation on each of its 
elements, a large amount of time could be saved if numerous processors 
were available, each performing the same operation on one element of the 
array all at the same time, that is, working in parallel. This is [quite naively 
presented) the principle of multiprocessor computing: the computer is 
organized with a network of processors. Each one is programmable, and 
executes its own program while communicating with others over the 
network. 

Attempts at 2D substructure searching [37, 38] have shown that this 
problem implies inherent parallelism, and can be efficiently speeded up by 
sharing tasks within a network of processors. 

Brint and Willett [39] studied the use of a transputer network for identifying 
the greatest common substructure for a pair of molecules. First, they use a 
software simulation, then an actual transputer implementation. The 
algorithm used was that proposed by Crandell and Smith, the basic 
modification being that most of the steps can be performed independently for 
each of the structures being compared {growing and naming substructures, 
amending the distance table, etc.}. The only interaction between the separate 
processes of each molecule being the comparison phase, which must  occur in 
due time. Encouraging results were obtained, but the authors stated that in 
practice, "a substantial increase in speed is achieved if, and only if, the MCS is 
large." Parallel implementation of the atom mapping method is described 
elsewhere [35]. 

Neural networks provide other capabilities of non-sequential operations and 
address learning, classification or combinatorial problems using a holistic 
process. Remember that in such networks, the status of a given node depends 
upon the status of all the preceding nodes to which it is connected, and from 
which it receives inputs. In turn, as output, the status of this node monitors 
the status of the following nodes connected to it. In the resolution of a given 
problem, nodes are randomly updated {from treatment of a learning set of data, 
or minimization of an objective function) until a stable solution is found 
(Figure I i. i i ). 

A Hopfield's network (a hilly interconnected network) has been used to 
solve the well known Travelling Salesman Problem: find in what order a set 
of towns can be joined with a minimal trip {and passing through each town 
only once}. Such a problem of correspondence between a series of sites and 
their order of visit, minimizing the distance criterion, is not far from the 
problem addressed in finding atom correspondences between two structures 
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Figure 11.11 Artificial neuron. 

with the rms value of the difference distance matrix as an objective 
function. Indeed, Hopfield's network was used successfully [40] to search for 
a given 3D {or 2 D ) p a t t e r n  within a molecule, or to derive the maximal  
common  substructure between two structures {Figure 11.12}. 

Using a Boltzmann's machine {a Hopfleld's network with a simulated 
annealing algorithm) avoids becoming trapped in local min ima  {partial 
solutions), and so safely l imits the number  of trials necessary to get the best fit. 
An example is given in Plate XVIII b. 

Figure 11.12 Hopfleld's network. 

11.3 SIMILARITY BETWEEN STRUCTURAL SHAPES 

The preceding geometry comparisons work to a large extent on wire-frame 
representations, where atoms are considered as points. The rms difference 
between atom locations [once the structures are superimposedl or the 
difference distance matr ix {DDM) offer an efficient way in which to detect to 
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what degree two wire frame structures may be considered as similar. For more 
realistic comparisons in terms of chemical or biological activity, special 
interest was devoted to the detection and evaluation of the similarity between 
"structural shapes" [e.g. volumes) giving more insight into steric requirement 
and mainly "property shapes" displaying electronic characteristics such as 
electrostatic potential or electron distribution. Indeed, maximal electronic 
similarity is often more useful than structural similarity in monitoring 
molecular reactivity. Note that the MEP evaluation also includes some steric 
information, since highly positive {repulsive} values result in the vicinity of 
the atom locations. 

New indices therefore had to be defined to quantify the similarity between 
two structural or electronic shapes. In a pioneering work, as early as 1980 (see 
below), Carbo et al. [41, 42] proposed a "computational" approach, relying on 
evaluation of the electron density overlap between the two superimposed 
molecules. However, for electromc properties not easily described through 
analytical expressions, as in the Carbo deflmtion, or for volume comparisons, 
numerical (discrete)methods have largely been used. Basically, all these 
approaches employ the same fundamental procedures [43, 44]: the property is 
evaluated for two molecules (or the target and the current candidate ff 
screening a database} on the nodes of a 3D lattice structuring the space. A 
similarity index is calculated. Since molecules, at the beginning, are generally 
positioned arbitrarily, their relative orientation must  be optimized for a 
maximum of this index. Depending upon the property chosen, or the authors, 
differences appear in the calculation of the indices, space sampling or method 
of optimization [43, 44]. Finally, gnomonic projection has also been proposed 
for surface or property comparisons. 

11.3.1 Similarity indices by overlap integral 

In the model of Carbo [41, 42], the electron density overlap between the two 
superimposed structures (quantifying their similarity) is expressed by: 

NA B -- 
Ig~gB d Y  

[I g.~dv]~ [I g~ dv] ~ 

where g^, gs = electron density of molecule A (resp. B) at the current point. 
In this formula, the numerator evaluates the overlap of charge density while 

the denominator is a normalizing factor, so that the range of R,~ variations is 0 
to 1 (for identical molecules). Within the same formalism, it is also possible to 
extend the comparison to other electronic properties such as MER 

However, it was stated that this index compares shapes of electronic 
distributions rather than magnitudes. So setting g~ = gs or g~ = n .g~ leads to the 
same unit value for R,~. An alternative index was proposed by Hodgkin, which 
compares both shape and magnitude [45, 46]: 
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H A  B "- 

2 f ~t̂  ~tB dv 

[J ~^~ dv] +[J ~ dv] 

In their primitive expression, such definitions involve complex 
calculations for atomic integrals. Some approximations have been proposed 
using either semi-empirical CNDO calculations {with rather poor results, at 
least for electron density comparisonsl [47], or Gaussian charge-distributions 
[48]. This later approximation, consistent with ab initio results, is so fast to 
compute that interactive superimposition processes can be performed: 
calculation of a similarity index, adjustment of the positions of the molecules 
to be compared, evaluation of the new similarity index value, etc. Automatic 
evaluation is also provided by the ASP package [49]. Other practical problems 
can also appear as to the extent of the comparison: in other words, should the 
integrals be evaluated over the whole molecule [including the side chains) or 
restricted to the main framework containing the pharmacophore? Modified 
molecular and charge-similarity indices have been proposed by Richard [50], 
with the incorporation of nuclear charges so as to not overestimate the 
importance of core electrons and better model the effects of the total charge 
distribution. 

11.3.2 Similarity evaluation through space structuralization 
and Boolean operations 

In numerical methods, the molecules to be compared are embedded in a 3D 
lattice of nodes. We discussed such grid methods for the calculation and 
display of molecular surfaces and volume in Chapter 8. Suffice it to say here 
that if the nodes are rationally explored, the description of the molecular 
property can be reduced to strings of bits encoding whether or not nodes satisfy 
the criterion selected (for example, inside or outside the molecular volume, 
MEP higher than a given level}. Such a data structure is well suited to easily 
carrying out Boolean operations. Union defines the total imprint or trace of a 
set of molecules, a theoretical structure embedding all the others; intersection 
selects their common part, the population focus; for two molecules, 
symmetrical difference determines the unshared volume pertaining to one but 
not to the other, and so on. 

Boolean operations can also be performed on the isovalued envelopes 
associated with electronic properties {MEP, for mstanceJ. The problem here is 
a little more complex, since these envelopes are first derived by extrapolation 
between nodes on the lattice edges. We developed two approaches: in one 
method, relevant nodes are first selected through Boolean operations and the 
resulting isopotential volume is represented thereafter. In the second one, this 
volume is determined through the intersections of the facets limiting the 
individual isopotential volumes of each molecule [3, 4]. 

Grid methods were also the basis of various attempts to quantitatively 
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evaluate {and optimize) the similarity between two molecules regarding a 
given property. For shape or volume, for example, the goodness of the fit (the 
similarity criterion) can be easily evaluated with the ratio of the number of 
nodes {grid points) commonly occupied by both molecules to the total 
number of nodes occupied (or a mean square of it), or to the number of nodes 
occupied by the target [51-54]. The method was applied to evaluate shape 
similarity between linear, branched or cyclic alkyl groups and a phenyl group 
(group G being assimilated to molecule G-H). Two sets of experiments, 
dealing with selectivity measurements or biological activity, illustrate 
potential applications of this similarity index [53]. The complement of the 
similarity index was also related to the "chiral coefficient" proposed by Gilat 
[55], and offers a method for its numerical evaluation [51]. Similar indices can 
be introduced for H-bonding capabilities [52]: ratio of number of commonly 
formed H-bondings to the number of possible H-bondings in the target 
molecule. Nodes on the grid are "flagged" as possible H-bonding partners, 
according to their distance and direction to the H-bonding groups in the 
target. 

Grid methods can also address the problem of evaluating electronic 
similarity, the integrals intervening in the Carbo and Hodgkin formulae being 
evaluated by a discrete summation of nodes [52]. But, as claimed by the 
authors, due to the binary character (yes/no) of the counting, it cannot respond 
to the gradation of electronic density [51]. For calculating MEP similarity, it 
was alternatively proposed to introduce, in the numerator of Carbo or Hodgkin 
indices the differences in the MEP values, and compare it to the maximum 
value of the MEPs. This was associated with the creation of new software 
tools, increasing flexibility and allowing for the display of similarity maps, 
with the possible inclusion of steric penalties [56]. On another hand Manaut et 
al. [5] chose Spearman's rank correlation coefficient to evaluate the similarity 
of MEP distributions encoded on grid nodes. In this work, the space around the 
molecule was limited by a shell corresponding to twice the van der Waals 
atomic radii, internal regions [within the molecular volumes) being excluded 
to avoid singularities or very high MEP values. Possible areas where the MEP 
is higher than a preset value are also considered, since such areas may be 
important to characterize the electrostatic pattern. 

The adjustment of the orientation of the two molecules to obtain the 
better similarity is generally performed by fixing one molecule and moving 
the other by small translations or rotations. If the calculation of the 
similarity index is fast enough, adjustment can be performed interactively. In 
other cases, or when screening a large database, automatic processes are 
provided, as in ASP [49] or SUPER [54] where the first 20 correspondences for 
surfaces and charge distributions are selected. In Manaut's treatment [5], 
maximization of the similarity is carried out by a gradient procedure: one 
molecule is given translation and rotation displacements around three 
orthogonal axes, a new grid is calculated and the similarity evaluated. 
Selected examples (among them the well known case of methotrexate and 
dihydrofolic acid, where electronic rather than structural similarity has to be 
sought - see above) testify to the efficiency of the approach. Special interest 
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was devoted in this work [5] to the initial position of the superimposed 
molecules, since a good starting point may avoid local minima and speed up 
optimization. A least-squares superimposition is used when the structures to 
be compared are neighbours. In other cases, molecules are located so that the 
centroids of their electron distributions coincide and their dipole moments 
are aligned. Some torsional flexibility for one molecule can be added, 
optimization being carried out with a SIMPLEX method [57]. Other authors 
proposed to bypass this cumbersome step of orientation adjustment, taking 
advantage of elements of similarity (for example, clustering of atoms near 
symmetry elements) or using weighting factors depending upon the atom 
type [S I I. 

How fine the grid must be and how far beyond the molecular surface it 
should extend have been investigated by Richards et al. [49]. The best 
compromise between accuracy and time cost was defined as a 4A/1A grid (a 
grid with increments of 1 A and extending 4 A apart from the lowest and 
highest atom coordinates in the molecule). However, results are less decisive 
as to the choice of point-charge values obtained through various quantum 
chemistry methods (MNDO, AM1, STO--3G). In the set investigated, the AM1 
approximation was claimed to give satisfactory results. For other examples, 
see Nakayoma and Richards [58]. 

A radial-type grid MACRA (Molecular Atom-Centered RAdial grid)was 
introduced by Richard [59] in place of a cubic grid to evaluate a new 
quantitative similarity index (MEP-SI) based on a Carbo-type formalism. It was 
claimed to provide more efficient storage of MEP information and a 
convenient means to perform local comparisons. Examples of the utility of 
molecular similarity calculation as a tool for searching 3D databases are given 
by Good et al. [60]. They address the choice of structural modifications of a 
template or the search for a pharmacophore-matching structure (from 3D 
database screening) to find a compound that best mimics a target molecule or 
a lead. 

11.3.3 Comparison through gnomonic projection 

A general approach, valid for both the molecular surface and a property 
encoded on it (MEP, for instance}, was introduced by Chau and Dean, 
allowing for the comparison of equivalent surface patches [61]. Such patches 
may be thought of as representing parts of the molecule able to bind the 
receptor site. The method relies on gnomonic projection, that is a central 
projection of a property on a point on to a spherical surface (of arbitrary 
radius), retaining the 3D characteristics of the surface inspected. A ray from 
the centroid meets the molecular surface at a pierce point. The parameter 
value computed on this point of the surface examined (the "inspection 
surface") is assigned to the corresponding projection on the sphere (Figure 
11.13). 

To generate a semi-regular distribution of projection points, an algorithm for 
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Projection point II 

Figure 11.13 Gnomonic projection. 

icosahedral tessellation has been proposed, leading typically, to 102 vertices 
[61]. In other applications, using an icosahedron plus a dodecahedron with 
vertices at the centre of the triangular faces of the icosahedron creates a set of 
12 + 20 points to characterize the projection sphere [62] (Figure 11.14). 

Let us suppose we have to compare two molecules. They are first positioned 
in their respective matched orientation, and translated so that their centroids 
coincide with the origin of the coordinate system. From each projection point 
(vertex of the icosahedron approximating the projection sphere) a ray is drawn 
towards the centroid and the pierce point (intersection with the inspection 
surface) computed. The projection point is encoded with the distance 
(centroid/pierce point)for comparing molecular surfaces, or with the MEP 
value at the pierce point (if the MEPs on the molecular surfaces have to be 
compared). So any shape of surface patch can be compared. The quality of the 
match between the two surfaces is determined with Spearman's rank 
correlation analysis [63, 64] taken here as: 

t] 

Rank = 1 - 6~dk~/(n 3 - n )  

k = l  

where d. = the difference in ranks between the corresponding pairs of surface 
parameters, and n the number of data points. 

(a) (b) 

Figure 11.14 
(b). 

Generation of surface patches using a dodecahedron (a)or an icosahedron 
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Rank correlation is not affected by the actual values of the points, but only 
by the differences in ranks between paired members of the two sets of points. 
So, an alternative procedure [63] prefers to consider an error function: 

~ e i  2 

where e, = P,^- P,~ is the difference between property values for molecules A 
and B at point i (total n points). 

In subsequent papers, Dean et  al. [63, 65] proposed a method for searching 
for best pattern matches between parameters mapped on to molecular 
surfaces. The comparison is carried out over a patch of a predeflned shape 
projected on to the first molecule and supposed to characterize the property 
on this molecule. The second molecule is rotated to find matches within the 
projected window. 

The procedure outlined assumes that we know the patch on one molecule 
to be matched by rotation of the second molecule. The basic task is therefore 
to mimmize the residual between two faces with one molecule fixed and the 
other allowed to rotate. Numerous starting positions would have to be 
examined to get the best match [absolute minimum of an objective 
function). To save time, the search has two levels. First, partial 
mimmizations define possible solutions for rotational coordinates, gathered 
around each feasible minimum. Then a cluster analysis of these 
intermediate results and a complete optimization locates discrete matching 
orientations. 

The problem was generalized to situations where any particular patch to be 
matched cannot be predeflned. In these "blind searching" procedures, the only 
reference frame is the window through which the molecules will be compared. 
Each molecule is then allowed to rotate, and the residuals are minimized to 
find matches, through a six-dimensional cluster analysis [66]. 

In such comparisons of the spherical parameterized surfaces of two 
molecules, a large number of starting orientations would have to be 
considered. Taking advantage of the symmetry properties of the regular 
icosahedron and dodecahedron largely reduces the part of the conformational 
space to be considered, and saves computer time [62]. 

The gnomonic projection method was adapted with the Sperm program [43, 
44] to the search in 3D structural databases for molecules showing 3D shape 
similarity. As in Dean's treatment, the property investigated may be the shape 
(point inside or outside the molecular body} or any electronic feature (electron 
density, electrostatic potentiall. In a first attempt, the property investigated 
was mapped onto 32 points on the projection sphere [corresponding to the 
vertices of a dodecahedron and icosahedron), and taking advantage of the 
icosahedral symmetry for reducing storage requirements and speeding up 
the scanning of the rotational space. To scan the conformational space, the 
molecules to be compared are first located with their geometrical centres 
coincident with the centre of the sphere [assumption justified when looking at 
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similar molecules) and their principal inertial axis aligned. Then a systematic 
search is carried out with a coarse grid that will subsequently be refined in the 
interesting regions. The process is therefore slightly different from that of 
Dean and Chau, which uses minimization from random starting orientations 
and then clustering. The similarity criterion retained here is the root mean 
square difference {RMSD): 

1 RMSD = (P~ - PB~ 12/n 
i=1 

where P,~ and PB~ are properties on molecules A and B at point i, and n - the 
number of points. 

Subsequent studies [44] showed the necessity for tessellation of the 
polyhedrans to dispose of at least 162 points to obtain reproducible and reliable 
similarity indices. To reduce the computation time, preliminary screens can be 
introduced. They are properties which, if matched between target and 
candidate, are indicative of a high similarity: molecular volume, data on 
inertial moments, etc. The method was claimed to be able to screen extensive 
databases (33,000 compounds} in about 7 hours on a VAX station 3100M76. 
Interestingly, the authors noted that "in addition to molecules showing 
topological similarity to the query, hits are also obtained showing considerable 
structural variety: molecules topologically dissimilar but nevertheless 
resembling closely in space." Note also that in the search for ligands able to 
bind a common receptor site, SPERM requires only the shape of one ligand to 
be known. It mainly estimates overall similarity, but allows for local 
incompatibilities, whereas other programs (such as DOCK, see Chapter 12 
require the receptor structure and a shape of the binding site, but allow for 
ligands extending outside the binding site, provided that bad contacts with the 
receptor are avoided. 

11.3.4 Geometrical complementarity 

Close fitting of the molecular surfaces of a macromolecule and a bounded 
ligand is likely to be an important phenomenom in drug-receptor interactions, 
since among the main interaction mechanisms are steric requirements (no 
overlap between atoms) and hydrogen-bond formation, which obeys quite well 
defined distance constraints. A rapid estimation of how close two molecular 
surfaces can be is obtained by using a grid of points, let us say (xj, y~, 0), 
projected on to the molecular sufaces along the z direction [67, 68]. A 
difference matrix D, can be built, measuring for each projected ray, the 
difference in z between the two pierce points, corrected by the translation T, 
bringing the surfaces into closest contact at one point (Figure 11.15). 

Other aspects of ligand-receptor complementarity, particularly in view of 
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Figure 11.15 2D schematization: dots correspond to the intersection of the projection 
lines (along z) with the two molecular surfaces. T is the translation vector bringing the 
surfaces into closest contact (from Dean with permission [67]). 

designing new active drugs, will be discussed in the next chapter, which is 
dedicated to the pharmacocophore approach. 
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Interpreting the mode of action of drugs or designing new active compounds is 
a fascinating challenge which has prompted immeasurable work. However, 
until now, in most cases only partial solutions could be proposed. In fact, as 
stated by Sheridan and Venkataraghavan [1], the design of new drugs is not so 
advanced as the design of an aircraft or a ship's hull, since the laws governing 
pharmacological action are not as well known as the basic principles of hydro- 
or aerodynamics. In the present state-of-the-art, the purpose of computer- 
assisted drug design (CADD)is mainly to propose models consistent with 
observations and to suggest new experiments that it is hoped will be the most 
fruitful [1 ]. 

A first step in the development of new drugs is the search for "leads": 
compounds active in a particular therapeutic area, used as a guide for the 
synthesis of analogues, which will thereafter be optimized thanks to 
structure/activity analysis in order to increase activity and decrease toxicity. 
Until now, leads have frequently been found by screening numerous 
compounds, or have been discovered by chance. But it may be hoped that 
molecular modelling can provide more rational and efficient approaches. 

A starting point may be the observations of Crum-Brown and Fraser [2]: "... 
there can be no reasonable doubt but that a relation exists between the 
physiological action of a substance and its composition and constitution." 
Important developments arose from Langley's work [3] on the antagonism 
between pilocarpine and atropine in saliva. He suggested the formation of a 
complex between exogenic compounds introduced and a material present on 
the nervous terminations: this was the concept of a receptor. 

During the past century, definite and continuous improvement in this field 
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corresponds to the use of quantitative descriptions of structural 
characteristics: quantitative structure activity relationships (QSAR) give 
valuable information about the influence of electronic, steric or hydrophobic 
features, and allow for quantifying their influence upon the biological activity 
of drug molecules. As shown by Hansch and co-workers, the relative 
importance of the various mechanisms {steric, hydrophobic)taken into 
account in the QSAR treatments often offers some insight into the nature of 
the receptor sites adjacent to the substituent under study [4]. 

Another important step in the last decade was the use of computer-assisted 
molecular modelling: displaying the three-dimensional structure of molecules 
is of invaluable help so as to quickly grasp the essential features of complex 
interactions involving numerous (sometimes hundreds) atoms. Computer 
graphics appears to be a powerful tool for analyzing and understanding the 
intimate interaction mechanisms involved in drug action. Evaluating shape or 
electronic complementarity, taking into account conformational flexibility, 
and adaptation processes in molecular recognition allow for refining the 
interpretations, and possibly suggest new solutions. 

Today, computer-aided drug design largely takes advantage of the synergy of 
the two approaches of QSAR and molecular modelling to determine the 
feasible binding modes of a drug, and derive the subtle energetic and dynamic 
features of drug-macromolecule interactions. Two main goals are kept in 
mind: understanding the phenomena, and from this knowledge deriving 
guidelines for the design of new compounds. 

12.1 THE PHARMACOPHORE HYPOTHESIS 

Drug action involves very varied (and complex} aspects: 

�9 transport of the drug molecule from the point of administration to the 
receptor site, 

�9 in vivo chemical modifications or free energy changes for flexible drug 
molecules to adopt the conformation required by the active site, 

�9 energetics of drug [ l igandl -  receptor [active site of the proteinst 
interactions, 

�9 and finally, production of the biological response. 

As to the drug-receptor interactions, a two-step mechanism is generally 
accepted, beginning with the formation of a complex between the drug and the 
receptor. The formation of this complex induces specific conformational 
changes of the receptor, resulting in variation of its electronic characteristics, 
able to fire the biological stimulus. Some experiments using fast kinetics 
methods on acetylcholine agonists and antagonists [5], thermodynamic 
experiments [6] or even the direct observations of size variations due to 
complex formation [7] support these hypotheses. In a theoretical approach 
(studying interaction energy as a function of the distance for simple model 
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compounds), Hall and Kier [8] distinguish a first step where long range 
interactions are sizeable, without geometrical changes of the drug, these 
beginning only at shorter distances. Successive phases are thus: 

�9 Recognition" (long range interactions). The receptor identifies drugs (in 
their minimal energy conformation) that are able to bind. 

�9 Binding: formation of a complex, energetically favoured and sterically 
allowed. This implies adequate deformation of the drug (and the receptor). 

�9 Specific perturbation of the receptor inducing the biological response. 

According to this scheme, antagonists are considered either as molecules 
recognized by the receptor but unable to bind, or alternatively, as molecules 
able to bind the receptor, but unable to deform it in the expected way. The 
existence of additional binding sites in the antagonistic structures compared to 
agonists has recently been illustrated by Hoffmann et al. [9] on muscarinic 
ligands. This can be summarized by the scheme given in Figure 12.1. 

Despite this complexity, when looking more precisely at drug-receptor or, in 
other words, ligand-biomolecule interactions at the molecular level, medicinal 
chemistry largely relies on the central concept of "pharmacophore" or "3D 
mimicry". According to the classical "lock and key analogy" [1], drug 
molecules (keys) exert their effects by binding to receptors (locks). To bind a 
receptor site, a ligand has to be recognized by it: this implies that the ligand 
must possess some specific features which are indispensable for recognition, 
whereas other parts of the molecule may be changed without drastically 
modifying the affinity or pharmacological action. Such a specific arrangement 
of essential chemical groups, common to active molecules, constitutes the 
pharmacophore. This concept of a specific arrangement needed for recognition 
encompasses two aspects: the geometry of the active drugs (the shape of the 
key), and the volume of the binding site available for the ligand (the shape of 
the key/hole). Although more frequently presented in terms of geometry, the 
pharmacophore concept can involve steric and electronic features for a more 
realistic description (parts of the space where electron density, molecular 
electrostatic potential...take given values). This implies supplementary 
difficulties since, now, identification is not carried out on classical 
representations (graphs or coordinates), but on more conceptual shapes, not 
always defined through analytical expressions. 

Drug~Receptor 

Recognition 
Long-range 
interactions 

No" Inactive 

Binding 
Small 

deformations 

No: Inactive 

Specific 
perturbation 

No: Antagonist 

~.~ Agonist 

Figure 12.1 Theoretical scheme. 
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Although this concept of the pharmacophore requires various implicit 
assumptions (single binding mode, single set of important interacting groupsl, 
it proves to be very useful in rationalizing pharmacological data. The problem 
is to find the ways in which the drug may occupy receptor pockets, giving 
favourable interactions without overlapping the sterically forbidden regions. 
Once the pharmacophore is determined or the receptor is known, directly or by 
complementarity to the pharmacophore, the design of new active compounds 
becomes possible. 

However useful this approach may be, it must be borne in mind that various 
other aspects, which still cannot be predicted by modelling (transport, 
metabolism, toxicity in vivol, are also likely to modify the activity or the 
interest of a drug. 

Various strategies have been developed, depending upon the information 
available on the receptor. In the most favourable (but scarce) cases, the nature 
of the receptor site or, better still, the structure of the complex between the 
receptor and a bound ligand, is known by X-ray crystallography. This makes 
investigation of the interaction mechanisms easier, and can give some starting 
points for the design of other active substances. Sometimes, the receptor 
structure is still unknown but can be reasonably estimated by homology from 
analogous biomolecules whose 3D structures are available [10-18]. More 
ambitious is the prediction of the tertiary structure of a protein, based only on 
sequence information {even if the secondary structure can be correctly 
predicted, rules for folding still remain to be found). 

More frequently [by farl, the receptor is not known. The pharmacophore 
itself has to be deduced from similarity search within sets of active and closely 
related inactive molecules [4, 19-23] and the receptor will be thought of as a 
"negative image" of this pharmacophore. Conformational analysis, 
examination of various distance constraints in ligands having a different 
structure or conformational behaviour [24], and the search for a (or the 
greatest} common substructure constitute the basic tools of this "deductive" 
approach. 

According to Hall and Kier's [8] scheme, the recognition phase involves 
only long range interactions. Comparison of drug molecules in their 
minimal energy conformation can therefore give valuable information 
within a series of closely related structures. However, for a better 
understanding, or when investigating a wider structural scope, it becomes 
essential to take into account the potential flexibility of drug molecules to 
adapt the receptor shape. This approach is generally carried out by first 
considering shape complementarity, the energetics of chemical interactions 
involved being examined afterwards. In the search for new leads (starting 
proposals for drug design), this sequence saves some computer time in the 
formidable task of finding a common binding arrangement of essential 
atoms within all the low-energy conformers allowed for the set of 
investigated molecules. Once this framework has been attained, the chemist 
will be able to change the type of atoms, in order to optimize electrostatic, 
H-bonding or hydrophobic interactions with the receptor for a maximal 
activity. 
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12.2 ACTIVE CONFORMATIONS OF A DRUG: FEASIBLE BINDING 
MODES OF A LIGAND MOLECULE AT THE RECEPTOR SITE 

"Molecular docking" explores the binding modes of two interacting 
molecules, depending upon their topographic features or energy-based 
considerations [25], and aims to fit them into conformations that lead to 
favourable interactions. It therefore constitutes an essential step in 
determining the active conformation of a drug, i.e. its conformation when 
bound to the receptor. 

This is a complex problem, since the active conformation is not necessarily 
the more stable one, as determined by X-ray crystallography in the condensed 
phase (where packing effects may intervene), or calculated by theoretical 
methods for the isolated molecule in the gas phase. The drug can 
accommodate small conformation changes if they lead to more favourable 
interactions or avoid the sterically forbidden regions of the receptor pockets. 

How to hypothesize the active conformations of a drug? The point is to 
determine the a t o m s  of the receptor where ligands bind on the macromolecule 
accessible-surface and the ligand o r i e n t a t i o n  in the bound state. 

12.2.1 The receptor active site is known or can be inferred 

Of course, a direct determination of geometry for a ligand- or an inhibitor- 
bound receptor would give the answer [15]. Indeed, in some privileged 
situations, the structure of the receptor-bound ligand, or the structures of both 
the receptor and putative ligands, are known [26]. Such data about receptor 
geometry can be obtained by X-ray crystallography (although more recently, 
NMR studies can offer new tools for geometry determinations in solution). For 
example, Dihydrofolate reductase (DHFR)[10-14], which catalyses the 
reduction of dihydrofolate to tetrahydrofolate, 

Dihydrofolate + NADPH ~ Tetrahydrofolate + NADP 

has been extensively studied owing to its crucial role in DNA synthesis, and 
therefore in the growth of any organism where it appears as a key enzyme. 
Indeed, its inhibitors can be used to control growth in organisms (plant, 
animal, microorganism) [17]. For instance, they act as antitumoral 
(methotrexate) or antibacterial agents (trimethoprim). Other results are 
available on prealbumin/thyroid hormone [27] or tryptophan/tryptophan- 
repressor complexes [ 18]. 

From this X-ray information, the design of possible new ligands can be 
approached. This is generally carried out as a stepwise construction. First, 
knowledge of the putative binding sites of the receptor fixes some steric 
constraints on the geometry of possible ligands. On the other hand, the 
electronic (and hydrophobic) pattern of the receptor pocket determines the 
interaction field experienced by the ligand. It gives some restrictions as to 
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the nature of the ligand atoms which can provide the best {steric and chemical) 
complementarity to the receptor, and so the highest binding affinity. Once the 
right atoms have been located in the right ligand-point positions, one has to 
incorporate them into an actual molecular skeleton, and possibly optimize the 
proposed molecule with appropriate substituents. 

Although the structure of an increasing number of macrobiomolecules has 
now become available thanks to X-ray crystallography (the Brookhaven 
Database now contains about 3100 structures}, it is not always an easy task to 
crystallize binary or tertiary complexes in order to get X-ray information, and 
such experiments tell us nothing about quantitative energetics [28]. Comple- 
mentary computer-driven approaches are therefore clearly needed. 

Receptor-based design 

A first type of approach corresponds to the so-called "receptor-based design of 
inhibitors" [14]. Kuyper et al., for example, used a 3D model of the complex 
formed between Trimethoprim (an antibacterial) and Escherichia coli DHFR to 
design analogues of Trimethoprim with a higher affinity with DHFR, and to 
derive complementary information on the binding mode {their conclusions 
were thereafter ascertained by X-ray experiments){Figure 12.2). 

The challenge is to imagine new systems with appropriate substituent 
groups (carboxylic acid groups in the example quoted} able to ensure enhanced 
interactions with selected sites of the enzyme (here a guanidinium fragment in 
an Arg residue), and to optimize their spatial location by adjusting the length 
of the chain bearing them (Figure 12.3). 

In such studies, determining the final bound geometry of a ligand was, to 
some extent, approached manually [29], adjustment being obtained through 
the manipulation of 3D coordinates. Appropriate rotations and translations are 
sought, so as to obtain superimposition of drug atoms and receptor sites and a 
good steric fit. Novel approaches, where the computer-generated image 
replaces the usual molecular models try to automate the process of fitting 
ligands to receptors, avoiding these lengthy coordinate manipulations to find 
possible binding modes, and making the investigation of the conformational 
space easier, which may become a formidable task for flexible ligands. This 
constitutes the aim of "shape matching" methods, which emphasize the 
complementarity of shapes, thought of as an essential aspect of ligand-receptor 
interactions. 

NH2 NH 2 
A A .OMe N , ~ J ~ O R  

H.N~97 O~OM e H'N sJ~Nl"" T "OMe 
OMe OMe 

(a) (b) 

Figure 12.2 (a) Trimethoprin (TMP), (b) active analogue (M)(with R = (CH2J2CO2H, 
affinity is about three times higher than that of TMP). 
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Figure 12.3 Receptor-based design of DHFR inhibitors. Schematic illustration of 
binding for molecule (M), an analogue of Trimethoprim (TMP) bearing a carbomethoxy 
chain R = (CH2)2CO2H. Segments A, E and F (parts of ~ sheets) are located on the rear of 
the binding cleft. On the left hand side, the cleft is limited by an irregular peptide chain. 
The right hand side contains an irregular region and a helix (B). As for TMP itself, the 
pyrimidine ring is bound to Asp-27 (nitrogen atoms are drawn in black), the benzyl 
moeity is partially enclosed by Phe-31 above, Ile-50 on the left and Leu-28 on the right. 
To get a better binding affinity, an additional interaction (H-bonding) has been designed 
thanks to the carboxy group of the side chain introduced, which interacts with the 
guanidium group of Arg-57 (from Kuyper et al. with permission [14]). 

Similarly, it may be feared that the search strategy for new drugs largely 
relies on the designer's knowledge and intuition, both for identifying key 
features of the receptor pocket and for building molecules under given 
geometrical and electronic constraints. Danziger and Dean [30] suggested 
recently that artificial intelligence methods can help to define automated 
processes, providing a more systematic approach, and avoiding individual bias 
and the subjective selection of those avenues potential ly leading to possible 
solutions. This is the basis of their "site directed design" (see below). 

Finally, binding efficiency is not only a mat te r  of geometry; the energetics of 
interactions, which may be just as "critically important" ,  mus t  be considered 
[28, 31, 31a]. 

To more easily determine the favoured sites where ligands may bind the 
known active site of a target macromolecule,  Goodford e t  al. [31-32] proposed 
to evaluate the interaction energy on a grid of test points surrounding the 
target. An empirical energy function was proposed to calculate Lennard-Jones, 
electrostatic and H-bonding terms (the latter taking into account the nature of 
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the donor and acceptor atoms and their location in space) as a sum of pairwise 
interaction energies between probe groups and the target. Typical probes 
include water, methyl, amine nitrogen, carboxy oxygen and hydroxyl. Contour 
surfaces of negative energy delineate regions of attraction, and allow for 
specifying the spatial positions to be occupied by the ligand atoms for a 
favourable interaction with the target. Although, as stated by the authors, 
evaluation of interaction energy on the basis of additive pairwise terms may 
only be a crude approximation, good agreement was observed with 
crystallographic results. This method, which simultaneously considers both 
shape and energy, correctly retrieves binding sites for water or other ligands in 
known systems. It therefore appears to be a useful guide for interpretation in 
docking studies [31--32], but also a helpful tool to be incorporated into 
programs dedicated to the design of new ligands [33]. 

In other respects, this study also established that the release of water on 
binding has an important influence in the hydrophobic effect (entropic terms}. 

For a "real time" evaluation of energy features, Pattabiraman et al. [34] used 
a similar approach. Prior to docking, a potential, representing electrostatic and 
van der Waals terms, is calculated on a 3D grid enclosing the receptor. Thanks 
to this pre-calculation, the interaction in the docking process is quickly 
evaluated, assuming that the drug atoms always coincide with grid nodes (an 
approximation which seems satisfactory with a mesh of about 0.5, 0.25 ,/k}. 
Results appear qualitatively consistent with the usual more elaborate (but 
slower} methods. 

A u t o m a t e d  shape m a t c h i n g  

Apart from various algorithms to superimpose the atomic framework of 
molecules or macromolecules [see Chapter 11}, docking macromolecules by 
shape {i.e. taking into account the actual volume occupied by atoms)was 
considered by Wodak and Janin [35], characterizing the interaction of two 
proteins with a simplified expression of their interaction energy, and by 
Santavy and Kypr [3 7], relying on purely geometrical features. 

The algorithms of Kuntz et al. [38] allow for fitting small rigid molecules 
into potentially binding clefts of macromolecular receptors of a known crystal 
structure. It was further extended to the docking of flexible ligands [36]. The 
approach relied first only on shape complementarity, without energetics 
consideration {except a very crude hard sphere test: interatomic distances are 
compared to the sum of van der Waals radii to rule out all but very small atom 
overlaps). It has recently been improved with a more refined evaluation of 
interaction energy [thanks to a molecular mechanics function, taking into 
account van der Waals and electrostatic terms of the AMBER force field). 
Computation is made easier by precalculating the receptor-dependent terms in 
the potential function on a 3D grid mapping the active site [33]. 

The principle is to determine the surface complementarity between the 
ligand and the receptor by searching for a fit [or more exactly, some 
geometrical identity) between the ligand and a "negative image" of the 
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receptor. In other words, the complementarity between the key (drug) and the 
keyhole (the receptor)is approached by representing the keyhole, in negative, 
by a virtual shape (featuring the void volume) and looking for the identity of 
the key(s) and this virtual shape. In the Kuntz method, the molecular surface 
is used as a starting point to characterize shape (only non-hydrogen atoms with 
united-atom radii being selected), and both the ligand and the "negative" of the 
receptor are schematized by two sets of "imaginary" spheres filling, 
respectively, the key (ligand) and the receptor's negative (the keyhole)(Figure 
12.4). 

," cleft / 

. o - - - ~ . ~ ~ , -  imaginary sphere 

~'~ - receptor atom 

, ,.2"-~-'.'... _ . , ,  re-entrant surface 

(._. 
Figure 12.4 The receptor's cleft (the keyhole)is approximated by a set of "imaginary 
spheres" filling the void volume and defined as tangent to receptor atoms (from Kuntz 
et  al. with permission [38]). 

First, to build a negative image of the receptor, the program generates from 
each surface points a set of spheres that fill all pockets and grooves on the 
surface of the receptor. These spheres are drawn as touching the molecular 
surface at two points and lying outside the receptor surface (in the void key- 
hole) (Figure 12.5). Various criteria are introduced to reduce their number: from 
each surface point, only the smallest sphere is retained since the larger ones 

Figure 12.5 Fitting an imaginary sphere (negative of the receptor) to receptor surface 
atoms i,j. The centre of the sphere lies on the surface normal at point i (from Kuntz 
et  al. with permission [38]). 
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would intersect the surface. Then among them, spheres with 0 > 90 ~ which are 
more likely to lie in shallow grooves, or r > 5A, which extend out of the top of 
the receptor pocket, are rejected. Similarly, pairs of contact atoms must be at 
least four consecutive amino acid residues apart (otherwise they would 
probably be involved in a groove of an cx helix). So, the number of imaginary 
spheres can be reduced to one sphere per atom (the largest sphere from the 
contact surface points of each receptor atom and the largest from the reentrant 
surface of each ligand atom). Then, overlapping spheres {considered as 
belonging to the same site) are gathered into distinct clusters (of typically 
about 50 units). Over an entire molecule, several clusters are generally found, 
representing cavities of various sizes and giving a good estimate of the possible 
binding sites of large biomolecules. The largest set usually corresponds to the 
binding site observed. Similarly, the ligand is represented by a set of spheres 
which approximately fill the space it occupies. 

Within this approximation of both ligand and receptor shapes by sets of 
spheres, the problem is to fit the set of ligand spheres within the set of receptor 
spheres. The first step of the matching algorithm (the more time-consuming 
onel gathers all fits that are possible on a comparison of internal distances in 
both ligand and receptor. A systematic distance matching is handled, using 
distance matrices, without explicitly expressing the internal rotations 
necessary to actually carry out the real binding. A ligand sphere is paired with 
a receptor sphere if its internal distances to all the spheres in the ligand set 
match all the internal distances of the corresponding sphere within the 
receptor set [some tolerance limit on each distance is permitted}. This rule, 
which allows for the identification of geometrically similar clusters of spheres 
in the receptor and in the ligand, looks similar to one of the algorithms 
proposed to identify common 3D substructures (a basic problem in the 
evaluation of molecular similarity)[39]. 

The output consists of short lists of pairs of ligands and receptor spheres 
having all internal distances matching within a tolerance value (1 or 2 .~}. At 
least four pairs of contacts are necessary to ensure a unique docking. The list 
now has to be examined to resolve handedness, to check that the unmatched 
ligand spheres do not occupy sterically unacceptable positions, and to locate 
the ligand within the receptor pocket thanks to coordinate transformation. 
The final stage explores the suggested pairings: ligand atom coordinates are 
calculated and the locations of the ligand atoms are optimized to improve the 
fit {reducing steric interactions and looking for best hydrogen bonding 
interactions}. This algorithm was discussed in examples where ligand and 
receptor geometries were established by crystallographic measurements: 
haem-myoglobin interaction in metmyoglobin, binding of thyroxine to 
prealbumin, etc. It was confirmed that the method produces a sampling of the 
reasonable geometries {within 1 A of the geometries derived from X-ray 
crystallography). 

The DOCK package, developed by Deslarlais et  al. [40], was recently used to 
study inhibitors of the active site of cz-chymotrypsin [41]. Chymotrypsin 
catalyzes the hydrolysis of peptide amide bonds found on the carboxyl side of 
an aromatic amino acid residue {Figure 12.6). The binding receptor pocket is 
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Figure 12.6 Schematic representation of the active site of chymotrypsin. The docked 
anthracene molecule points out the size of the pocket (from Stewart et al. with 
permission [41 ]). 

known as a hydrophobic cavity with approximately the size of an anthracene 
ring system. According to the authors, the aim of this study was primarily to 
estimate, in database searches, the performance of computerized prescreening 
for the elimination of unequivocally inactive compounds, rather than 
identifying all active compounds in the case of well known receptor systems. 

Each element of a database of 103 putative ligands was systematically 
docked into the receptor site and evaluated for fit. This receptor site was 
comprised of 40 amino acid residues identified by X-ray crystallography, but 
water detected in the site was removed. The binding pocket was filled with 21 
spheres from 1-4 A in diameter and inhibitors docked by sphere-centre/atom- 
centre matching. The docked orientations were scored from a function 
approximating a soft van der Waals potential based on the sum of the van der 
Waals contacts (but up to now ignoring some important interactions such as 
hydrogen bonding or electrostatic forces). No strict correlation was obtained 
between known binding strengths and docking scores, but the program ranked 
eight of the potent inhibitors (acridine or quinoline derivatives)within the top 
ten best scoring compounds. This can be considered as a quite encouraging 
agreement between computer predictions and experimental observations. 

A fundamental problem in docking strategies is that the orientation space is 
very large and computation time rapidly becomes enormous. Furthermore, 
when looking at complexes between two macromolecules, where only a 
portion of a large ligand is involved in the active interface, many extraneous 
distances complicate the calculation. To overcome this drawback, Shoicet e t  

al. [25] proposed dividing macromolecules into independent, geometrically 
distinct subsections, which can be matched separately. In this variant, the 
larger spheres in the clusters modelling the cavity are eliminated so as to 
create subclusters to be independently considered. Furthermore, various 
algorithms have been tested to efficiently prune the tree-search matching 
distances in the receptor and the ligand. The method, tested in 10 protein- 
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ligand systems, including seven cases where the ligand is itself a protein, was 
able to successfully reproduce the experimentally determined geometries of 
the ligand in the protein. The interest of the method is to concentrate the 
search on regions of the orientation space that are likely to have high 
complementarity. This results in increased speed when compared to searches 
based on sampling a regular grid. 

In the previous approaches, the macromolecule is kept rigid. This 
assumption does not cause any problem for designing antagonists or inhibitors: 
if a drug binds tightly to some conformation of the protein, it prevents 
substrate binding and has an inhibitory effect. However, for agonists, which 
are generally smaller and more flexible molecules, things are more difficult, 
since the active conformation of the receptor must be known [40]. 

So, the approach was later modified by DesJarlais e t  al. [36] to accommodate 
some flexibility of both ligand and receptor. The ligand is now approximated as 
a small number of large rigid fragments, such a division allowing for some 
flexibility at the junction position. For each fragment a match with receptor 
spheres is sought independently. Then the ligand is recreated joining all 
fragments and eliminating orientations where fragments cannot be reasonably 
joined together. The examples presented rely on the binding of methotrexate to 
dihydrofolate reductase and thyroxine to prealbumin (Figure 12.7}. 

Encouraging results were obtained, where in each case, ligand binding- 
geometry was found, very similar to that observed by crystallography. 
However, interestingly, some other geometries, similar in energy, were 
sometimes also found. For example, with methotrexate, as well as a solution 
similar to the X-ray binding mode, another solution was also suggested, with 
the pteridine ring rotated 180 ~ {which looks very much like that thought to be 
assumed by folate)[15]. Clearly, several assumptions limiting the use of the 
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Figure 12.7 Division of the methotrexate molecule into moeities 1 and 2 (from 
DesJarlais et al. with permission [36]}. 
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latter method should to be borne in mind: only shape complementarity is 
taken into account, without any more detailed discussion of energetics 
features (strong hydrogen-bonding opposing weak van der Waals contacts, for 
instance, are neglected}, so that one can question the ability to derive 
predictions. Furthermore, it is also assumed that a receptor site changes only a 
little when the ligand binds to it. Nevertheless, this shape matching method 
may constitute an attractive tool for designing novel ligands able to bind a 
given macromolecular receptor the structure of which is known at the atomic 
level, by X-ray crystallography or inferred from pharmacophore models (see 
below) [40]. 

For the docking of flexible ligands, a recent variant of the DOCK algorithm 
first determines the orientation of a fragment of the ligand (the "anchor 
fragment"t within the active site [42]. These positions form the basis of an 
exploration of the cordormational space for the other parts of the ligand. The 
matching procedure includes some information about hydrogen bonding 
features thanks to additional "hydrogen bonding site points". 

In a quite different approach, Goodsell and Olsen [43] proposed a simulated 
annealing algorithm to take account of cordormational flexibility when 
docking a small molecule to a known receptor site (supposed static). The trial 
molecule performs a random walk in the space around the receptor. The 
simulation is broken into a number of cycles, each at a constant temperature 
and composed of a large number of individual steps. At each step a new 
substrate conformation is generated by small random displacement in each of 
its degrees of freedom [translation, rotation, rotatable bonds}. The interaction 
energy is evaluated Iusing a grid techniquel and examined with a Metropolis 
criterion: if the energy is lower than previously the conformation is 
automatically accepted; if it is higher it can be accepted with a certain 
probability, depending upon a user-defined "temperature". At the end of each 
cycle the temperature is lowered, according to a cooling scheme, and a new 
cycle is started from the lowest energy conformation of the preceding cycle. 
The process is able to escape from the local minimum and would, in principle, 
finally converge to the absolute energy minimum (if the number of steps is 
sufficient and the cooling scheme slow enoughl. For more details about 
annealing methods see Chapter 7. 

Flexibility is also tractable with the ellipsoid algorithm, a constrained- 
optimization method already presented in Chapter 7 for the multiple 
minimum problem, and which has been adapted to docking studies [44]. 
Sterically acceptable interactions between a macromolecule and a ligand are 
discussed as constraints on the distances, rather than in terms of energy 
evaluation. Upper distance limits between selected atoms, one in the ligand 
and one in the macromolecule, guide the docking, van der Waals contacts 
fixing lower distance limits. Examples treated use specific information about 
probable interatomic distances or consider that only the binding sites of the 
macromolecule are fixed without prior knowledge of the interaction pattern, 
so that all possible binding modes have to be investigated. Upper distance 
limits are used one at a time for a systematic exploration. For this problem of 
docking limplying only 6 degrees of freedom plus conformational flexibility}, 
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the authors insist on the robustness of the ellipsoid algorithm with respect to 
local minima and relatively small requirements of computer time or memory. 

With the generation of several extensive databases of 3D coordinates, a large 
impetus is now currently given to automated methods, where potential 
ligands {complementary to the shape of a known macromolecular receptor 
sitel are sought by screening a wide assortment of candidate structures. A first 
example was presented on two protein receptors: papain (a sulfhydryl 
proteolytic enzyme with broad substrate specificity) and carbonic anhydrase. 
Small molecules or fragments were extracted from a shape database built from 
a subset of the Cambridge Crystallographic Database. They were auto- 
matically docked by Kuntz's algorithm, and after geometrical optimization, a 
scoring routine retained only those proposals fitting best. The approach 
retrieved known ligands, but also seemed able to suggest reasonable dockings 
for a large variety of molecular architectures that were able to bind, although 
generally larger than the known possible ligands [40] (Figure 12.8). 

For example, the binding site of papain was identified as an elongated groove 
with a pocket at each end separated by a ridge. The search retrieves 3- 
iodophenyl hippurate (molecule (a), a known substrate intentionally added to 
the database}, and proposes other potential ligands. 

Some molecules exhibit {like hippurate)two bulky groups separated by a 
chain, and are likely to bind in the same mode: a bulky group in each pocket 
and the chain over the ridge [molecule (b)). However, other binding modes are 
found possible: molecule (c) fits with a pyridimum ring against the wall of the 
ridge; molecule (d)fits only one pocket (Figure 12.9). 

The same strategy (automatic docking of candidates extracted from a 
database of 3D coordinates with the Kuntz algorithm and sorting according to 
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Figure 12.8 Potential ligands of papain. (a) 3-iodophenyl hippurate, (b) N-(8-benzyl- 
ltxH-5t~H-nortropan-3J3-yl}-2,3,5 trimethoxybenzamide, (c)2,6 pyrido-24-crown-8, {d} 
[2,2] (4,4')benzophenono 2,6 naphtalenophane {from DesJarlais et al. with permission 
[401). 
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Figure 12.9 Binding of molecules (a-d) into the papain receptor site. The two receptor 
pockets are located on the left and right sides with a ridge at the centre of the figures 
{from DesJarlais et al. with permission [40]}. 

their steric fit to the receptor)was applied in a search for compounds that 
contain a particular pharmacophore [45]. Published examples show that such 
searches can identify classes of compounds different from the compounds used 
to derive the pharmacophore but known to have the appropriate activity and 
may suggest new structural classes for synthesis (Figure 12.10). 

According to the authors, it can be hoped that the best candidates, with 
optimum fitting of the bumps and grooves of the site can serve as precursors. 
To obtain new drugs, designers then have to modify the candidate so as to 
ensure steric but also chemical complementarity. 

The method was extended [46] to the design of new ligands ff a 
pharmacophore geometry has been established and the receptor-bound 
conformations of other ligands are known. Now the structure of the receptor 
itself is not available, and known ligands are used to derive a negative image of 
the receptor shape (this point will be discussed further). Given enough 
conformationally constrained active and inactive ligands, one can deduce the 
pharmacophore geometry. A set of active ligands docked together defines a 
"minimum binding site volume", space that an active ligand can occupy on 
the receptor. The hypothetical receptor may be thought of as complementary 
to this ensemble volume. In other words, the keyhole is approximated by the 
union of the volumes of the known keys. From a database of molecular shapes, 
one searches for molecules which can fit inside this minimum binding site 
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Figure 12.10 Determining a pharmacophore from a database. (a)The known 
pharmacophore for action on the Central Nervous Centres, (b) the query for the 
database search, (c)some of the solutions found {from Sheridan et  al. [45]}. 
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volume and which have interatomic distances compatible with the 
pharmacophore geometry. This step generates a framework, from which it may 
be hoped that new drugs can be derived modifying atoms to optimize 
interactions. 

Also relevant to the recognition of compounds meeting geometrical and 
structural requirements is the ALADDIN system from Martin et al. [47, 48]. It 
constitutes an integrated tool which can be used to perform automated 3D 
database searches for finding compounds fitting a known binding site (and in 
other applications receptor mapping). Besides distances, ALADDIN 
incorporates the steric fit to the binding site (the boundaries of the binding site 
being specified by dummy atoms), and specification of the structural 
environment of the atoms involved. 

A recent application [49] deals with the design of novel non-peptidic 
inhibitors of HIV protease, an important therapeutic goal in the treatment of 
AIDS. The active site of the enzyme was previously determined by X-ray 
analysis of the crystal structure of HIV-1 protease/inhibitor complexes. 
Important key interactions, identified from the complex structure, suggest a 
model of the pharmacophoric pattern: a central hydroxyl group (to interact 
with carboxylate side chains of Asp 25 and 25'), one or two symmetrically 
opposed hydrogen-bond donating groups (to interact with carbonyl oxygens of 
glycine 27 and 27'), a hydrogen-bond accepting moiety (to interact with Ile 50 
and 50' and displace the buried bridging water molecule). The set of the 
corresponding distance ranges fixes the geometric constraints retained. An 
extensive search with ALADDIN, among a large 3D database (140,000 sets of 
coordinates) leads to about 30 compounds, obeying steric and geometrical 
constraints, to be tested for their ability to inhibit HIV-1 protease (Figure 
12.11). Among them, three hydroxy-substituted benzophenones exhibit 
moderate levels of inhibition and may constitute leads for the design of more 
potent and potentially active HIV-1 protease inhibitors. 

Graph theory techniques have also been applied to dock a flexible drug on to 
a rigid macromolecular receptor on the basis of distance information [50]. 
Given the binding atoms of the receptor and the candidate atoms of the drug 
{regarding their H-bonding capabilities), a correspondence graph is drawn 
associating to each of the receptor sites any drug atom. Then, the point is to 
find the graph cliques to determine what interactions between pairs of receptor 
atom/drug atom can occur simultaneously. Clique-detection has already been 
presented in Chapter 11. Ligand flexibility is introduced by considering upper 
and lower limits rather than precise distances, and distance geometry is then 
invoked to generate docked structures. 

Arti f icial  in te l l igence and s i te-directed design 

As just stated, the design of new ligands {leads or new active molecules} can be 
carried out by analogy: known molecules selected from a database are placed in 
the known receptor pocket and scored for "goodness-of-fit". Another avenue, 
complementary to this design by analogy, is "de novo design", in which the 
ligand model is constructed piecewise in the receptor [51]. As already 
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Figure  12.11 (a) 2D representation of inhibitor A-74704 and hydrogen-bonding 
interactions with HIV-1 and {b) schematic substructure used for the search {from Bures 
et  al. with permission [49]}. 

indicated, this automated design [30] appears as a three-stage process: first, one 
identifies the interesting points of the receptor pocket; then, some ligand 
points able to interact with them are located; finally, these atoms are 
incorporated in a true molecular structure which is refined to meet the steric 
and electronic constraints. As to the location of relevant ligand points, the 
authors mainly focused interest on hydrogen bonding, owing to their prime 
importance in drug-receptor interactions 

From the atomic coordinates of a protein, extracted from the Brookhaven 
Database, hydrogen bonding groups at the surface of the protein are identified 
(and classified as either H-donor or-acceptor) (Figure 12.12}. Then, in the 
surroundings of these atoms, the probability of hydrogen-bond formation with 
good complementarity (acceptor region in the site corresponding to a donor 
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Figure 12.12 Schematic representation of the H-bonding network of a macrocyclic 
inhibitor in the active site of human renin (from Weber et al. with permission [52]). 

ligand point, and vice versa)is mapped on to a grid and displayed, locating 
probable hydrogen bonding regions of the ligand [Figure 12.13-12.15}. 

This approach, which considers regions outside the receptor as possible 
(virtual) locations for ligand sites, is therefore similar to that of Goodford [31, 
31a], although the energetic aspects are considered in less detail. The method 
takes advantage of the directional properties of the hydrogen bond (as shown 
by several crystallographic studies). This limits well-defined possible 
anchoring regions where ligand atoms, able to bind the protein through H- 
bonds, must be located. Steric hindrance from neighbouring protein atoms and 
the possibility of intramolecular H-bonds preventing receptor-ligand 
interactions are also looked for. 

The predictive power of the algorithm can be ascertained by the agreement 
observed in comparisons with some crystallographic results: for example, the 
position of oxygen atoms of water molecules on hydrated proteins myoglobin 
and plastocyanin (described in the Brookhaven Database with, respectively, 
388 and 44 included water molecules), or the positions of H-bonded atoms in 
protein-ligand co-crystals such as the enzyme dihydrofolate reductase (DHFR) 
co-crystallised with methotrexate (MTX) and NADPH and amidinophenyl 
pyruvate (APPA)complexed with trypsin [30, 53]. 

Once some ligand points able to interact with a receptor pocket have been 
defined, the following steps incorporate them in an actual structure. This 
generation can be divided into two parts: first creating a molecular graph 
spanning the binding site and fitting the ligand points, then going to the true 
molecule able to fit the mould formed by the receptor active site: that is 
proposing a ligand not intersecting the protein accessible surface, matching 
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Figure 12.13 Main H-bonding groups in proteins (from Danziger and Dean with 
permission [30]). 
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Figure 12.14 Geometrical parameters describing donor or acceptor regions (from 
Lewis and Dean [56], and Danziger and Dean [30], with permission). 
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Figure 12.15 Distribution of the H-bond angle 0. Such histograms (derived from 
analysis of crystallographic data) allow for the determination of the probability of 
occurrence of a hydrogen bond in a given geometrical location (from Danziger and Dean 
[30, 53] with permission). 

local hydrophobic and electronic patterns, and corresponding to a low energy 
conformation [30, 53-55]. 

Manually designing a graph for a fragment rapidly becomes a very difficult 
process, quite intractable by comprehensive searching for even a moderate 
sized fragment of, let us say seven atoms. So, rather than a bond-by-bond 
construction, suffering from complex combinatorial problems, building the 
molecular graph can be made faster by using some predefined bricks, such as a 
"building kit", to form links between ligand points [54]. This leads to the 
concept of a "spacer skeleton": a "topological artefact, composed of vertices 
and edges, which is able to model several distinct classes of compounds (ring 
systems) within just one graph and hence reduces the number of different 
structures that must be fitted to the defined ligand points" [54] (Figure 12.16). 

For the sake of simplicity, the problem was first tackled on 2D 
representations (avoiding conformational flexibility), a not unreasonable 
assumption since many molecular structures of biological interest contain 
cyclic parts. 

From a screening of the Cambridge database, an average geometry was 
defined for 20 different planar (or nearly planar) ring arrangements (spacer 
skeletons), designed to model many different fragments. These moieties 
provide useful frameworks from which molecular templates and then actual 
molecules (putative ligands) can be derived [56]. From the convenient spacer, 
fitting to ligand points is carried out through a distance matrix method, which 
examines all the possible correspondences between spacer vertices and ligand 
points, and optimizes the fit. Then, clipping (erasing certain parts lying 
beneath the accessible surface of the ligand-binding site) leads to a so-called 
"molecular template" which is still an (abstract) topological graph. Specifying 
the nature of its atoms and links converts it to a real molecule. 
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Figure 12.16 Many distinct compounds can be represented from the same spacer 
skeleton (top). From a subset of a spacer fitted to the receptor binding site, a molecular 
template is produced and then converted to a putative ligand (bottom} (adapted from 
Lewis and Dean with permission [54]). 

Note, however, that  erasing some links or modifying hybridization of some 
atoms, going from the spacer to the molecule, can induce changes in steric or 
geometrical characteristics, and this point has to be considered when deriving 
a molecular  structure from a spacer and a template.  The method has been tested 
at two binding clefts: the pteridine binding site in DHFR and the amidino 
phenyl pyruvate site of trypsin, using a spacer formed by a regular honeycomb 
of 11 hexagons. The graphs automatical ly generated showed strong similarity 
to those of real ligands, determined by crystallography [56] {Figure 12.17). 
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Figure 12.17 Templates fitting the binding sites on dihydrofolate reductase (derived 
from a honeycomb of regular hexagons). Crosses mark the atoms corresponding to 
ligand points. Side chains can be added to seed atoms (dark circles). Template (b) is 
similar to that of the pteridine group of methotrexate (from Lewis and Dean with 
permission [56]). 
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The approach was later extended to 3D through the generation of connecting 
chains. An efficient method consists of generating an alkyl chain between 
ligand points: Lewis [55, 57] suggested as a spacer skeleton the union of alkyl 
chains in the diamond lattice. An optimization process is proposed, selecting 
atoms of the lattice slightly overshooting the target atom be to linked so as to 
give some flexibility for a better adjustment through energy minimizat ion/  
flexible fitting {Figure 12.18). 

Target 
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Seed H ~  �9 " ~ Accessi bLe 
A ~ . ~ j ~ . ~  ,~ ~ ~ surface 

H ~ ~ _ ..... 

Figure 12.18 A chain is grown along the surface of the receptor, avoiding steric 
interactions with it. Spare valencies are filled with hydrogen atoms {from Lewis with 
permission [571). 

In the actual state, only steric requirements are examined for the chain 
generated crawling on to the receptor surface. It seems possible in future to 
also take into account hydrophobic or electrostatic effects (Figure 12.19). 

(a) (b) 

Figure 12.19 (a) Fitting a 2D template (bold) to the pteridine ring of methotrexate, and 
(b) a 3D template on the chain C~-C~. Ligand points and H-bonding atoms are marked 
as dots or asterisks (from Lewis with permission [57]}. 
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Artificial intelligence techniques for an automated structure generation 
from template joining have also been developed by Gillet e t  al. [58, 58a] for the 
design of new compounds based on 3D criteria. For this constrained structure 
generation, the same approach was retained: creating a molecular graph to fit 
designated ligand points, then converting the graph into a true molecular 
structure. To form "skeleton structures", i.e. approximate structures that 
satisfy the primary constraints (steric contacts with a boundary or binding 
constraints} building blocks (corresponding to commonly occurring 
substructures) are pieced together in all possible ways to prevent the 
construction of identical skeletons. Different conformations are considered, 
since steric effects in the structure can sometimes favour conformations that 
are not the low energy ones for the templates (Figure 12.20). 

Heuristics were developed to restrict the combinatorial explosion when 
joining templates. For example, grouping templates in similarity classes 
("super templates") avoids unnecessary processing (if, in a class, the template 
of minimum steric bulk violates steric constraints, it is no longer necessary to 
try using the rest of the class). Tests were presented on the active site of an 
enzyme known by X-ray crystallography: the APPA (p-amidinophenyl 
pyruvate) binding site of trypsin (Figure 12.21}. The program generates 
skeletons very similar to that of APPA, but also suggests possible novel 

Pr im ar t Constraints 

Viol.ation 

~ Solution 

Figure 12.20 Progressive structure generation by incorporating templates (from Gillet 
et al. with permission [58a]). 
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Skeleton A 

Skeleton B 
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Figure 12.21 Generation of structures mimicking APPA (p-amidinophenyl pyruvate). 
Skeletons A and B are very similar to APPA. Although looking quite different, skeleton 
C also meets the geometrical constraints. Corresponding atoms are indicated by dots 
(from Gillet et al. with permission [58]). 

solutions, looking quite different but maintaining a good overlap with the 
binding site. For other examples, see [58a]. 

In recent developments (the SPROUT progam [58a]) additional functions are 
included: structure evaluation, since the proposed structures must often 
satisfy other conditions: to be synthetically accessible, to present required 
transport properties, etc., organization of the results (clustering, ranking, etc.) 
since such programs of structure generation can produce a very large number 
of candidates. It can be noted also that in SPROUT, structure generation 
encompasses two parts: generation of molecules that satisfy the geometrical 
and steric constraints, and possible substitution of atoms in the skeletons to 
get better electrostatic and hydrophobic properties. 

For building up peptide or peptide-like ligands binding known active sites, 
the GROW program of Moon and Howe [51] uses a library of low-energy 
conformations of amino acids (and some chain-terminator fragments or non- 
hydrolyzable chain inserts) as templates. From a user-defined seed point, 
fragments are gradually joined together within the active site, and a scoring 
function is evaluated considering non-bonded interactions between receptor 
and ligand, desolvation penalties and internal strain. At each stage, all 
templates stored in the library are considered and the n (let us say 10) highest 
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scoring are retained. The efficiency of the program was demonstrated by 
reproducing the known bound conformation of an inhibitor of the aspartyl 
protease rhizopuspepsin and HIV-1 protease. An interesting application is the 
combined used of de  n o v o  design and screening a 3D database: computer- 
generated structures can constitute templates to search for new classes of 
compounds able to fit the receptor site. 

A similar approach was also developed by B6hm with LUDI [59, 59a], which 
exploits libraries of about 600 fragments and uses empirical rules or 
information extracted from the Cambridge database to locate hydrogen 
bonding and hydrophobic groups in the binding site. These fragments are then 
connected to form a molecule thanks to bridge fragments from a second 
library. Applications were presented for the crystal packing of benzoic acid and 
the enzymes dihydrofolate reductase and trypsin {Figure 12.221. 

Automated detection of receptor binding regions: 
Also relevant to site-point directed drug desig~ is, upstream, the automated 
determination at the atomic level of the receptor binding regions. 

E n z y m e  
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Figure 12.22 Some rules of LUDI to generate interaction sites (L,li, L.ro = lipophilic 
-aliphatic, -aromatic; A, D = hydrogen acceptor, donor} {from B6hm with permission 
[59J). 
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Frequently, these active regions correspond to clefts or dimples. 
Identification of such features from the atom-coordinate file of a protein can 
therefore give interesting clues as to its putative binding sites. The method 
proposed by Lewis relies on a Voronoi tessellation of the molecular surface 
[60]. It finds the complete molecular surface in a planar slice through the 
receptor, and also locates clefts and dimples in this surface. Recall that a 
Voronoi tessellation divides space into domains such as points, within a 
certain domain, lie closer to the centre of that domain than to any other 
centre. 

Atoms intervening in the section of the molecular surface intersect the 
plane along circles (the radii of which depend upon the van der Waals radii and 
the position of the atom centres with respect to the slice plane). In the simplest 
case, the trace of the molecular surface in that plane is described by a closed 
polygon through atomic centre projections. This convex polygon can be drawn 
using the "gift wrapping algorithm": starting from the atom with the lowest y 
coordinate, for instance, the remaining atomic points are scanned 
counterclockwise. The surface is drawn as wrapping a paper around a gift. The 
same is applied to Voronoi tessellation. 

Given two atom centres, the surface is closed (and tessellation can be carried 
out) only if their distance (d) is less than 2rp + R~ + R~, where R, and R~ are the 
radii associated with atoms 1 and 2, and rp the radius of the probe rolling on to 
the molecular surface. Otherwise (dimple region) the probe can slip between 
atoms 1 and 2. Then another vertex, a common neighbour to atoms 1 and 2, 
has to be found sweeping counterclockwise. For larger clefts, the surface 
cannot be completed (the distance to two common neighbours is too large to 
prevent the passage of the probe). A simple expedient can then be used: placing 
a "traffic island" allows for directing the search algorithm around the correct 
path. This adds to the surface tessellation a dummy tile, which marks the cleft 
and allows for its identification (for large clefts, a clump of adjacent dummy 
tiles is similarly built) (Figure 12.23). 

Putative receptor sites 

In some cases, only the amino acid sequence of the target protein, but not its 
three-dimensional structure, is known. As stated by Marshall, "the tertiary 
information resides in the sequence, but the translation rules (to derive 3D 
structure) have defied definition", especially for turn prediction. However, 
some (approximate) heuristic approaches have been developed to propose 
tentative 3D structures and derive models for the receptor site [4]. Valuable 
clues are sometimes provided by X-ray data on proteins next to the target 
protein itself. Computer modelling (performing side chain replacement and 
subsequent geometry optimization) can then more safely propose a reasonable 
3D structure for the target protein itself [61 ]. 

These approaches of the receptor site by inference or homology rely more 
closely on protein engineering and will be discussed in Chapter 13. For some 
examples, see Marshall [4]. 
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Figure 12.23 Detection of dimples (receptor binding regions}. (a) Voronoi tessellation 
of a set of points within a rectangular window, (b) "gift wrapping algorithm" in the 
construction of the convex hull ACIGB. From the lowest point A, a line is swept around 
counterclockwise {from the x axis} until the next vertex C is found. The same process 
is repeated from C, finding I ..., (c) distances between B and 1: or the common neighbour 
E are too large to prevent the passage of the solvent probe. A "traffic island" added to 
the set of atoms redirects the drawing to the path B-C-D-E-1:, (d) a "dummy tile" is 
added indicating a dimple in that region {from Lewis with permission [60]}. 

12.2.2 Unknown receptor site: deducing the pharmacophore 
(and the receptor) from binding drugs 

In most cases, one can only infer the target {the receptor) from drugs binding to 
it. Some approaches for finding the pharmacophore geometry are discussed 
elsewhere [62, 63], and will be detailed below. The main steps can be 
schematized as follows. First, one has to select the essential groups assumed to 
constitute the pharmacophore. Then, from examination of low-energy 
conformers for the set of drugs investigated, one has to find a common 
arrangement of the groups appearing in each molecule.  It corresponds to the 
receptor-bound conformation. The choice may be modified or refined by 
supplementary constraints until  only one common solution is possible [1]. 
Distance constraints of equivalent atoms in different ligands, having different 
structure or conformational behaviour, give some clues regarding the receptor 
pockets accommodating these ligand atoms [24]. Investigation of strongly or 
weakly bound ligands have also been proposed [19, 22, 23]. 
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In the "receptor mapping technique", all receptor-bound conformers are 
docked together with essential groups superimposed. The union of their 
volumes defines a minimal available space which is sterically allowed for the 
binding site. Even with good pharmacophore geometry, a molecule may be still 
inactive if it protudes beyond this allowed space, resulting in negative steric 
interactions, which preclude binding. The pharmacophoric hypothesis must 
be thereafter checked by examining compounds bearing the assumed 
pharmacophore but devoid of activity, and searching for any interpretation 
(differing metabolism, steric interactions, etc.). 

Pharmacophores were often derived from the examination of 
conformationally more rigid ligands (usually antagonists) for which the 
problem is simpler, the agonists (more flexible) being considered afterwards. 
Indeed, conformational flexibility sets a major problem in pharmacophoric 
pattern search and receptor mapping techniques. First, when only flexible or 
semi-rigid agonists are used, a conformational search method is necessary to 
find conformations for which the superimposition of essential groups is 
possible. Second, ligands bind the receptor in a conformation corresponding to 
a minimal energy for the complex, but the free energy of association generally 
outweighs the energy of a conformational change of the ligand [22, 23]. 
Although various studies consider only minimum energy structures, there is 
some evidence of systems where the actual bound conformer lies above the 
energy minimum by about 3 kcal/mol (and corresponds, therefore, for the 
isolated molecule, to species not easily detected under usual conditions 
because of that very low abundance)[4]. 

There is no doubt that minimal energy conformations may be of value in the 
search for a pharmacophore, since, at least for closely related molecules, 
similarity in the ground state is likely to reflect some similarity for the 
capability of adjustment to a common receptor. However, some caveat must be 
given. An illuminating example in the field is given in a study by Cohen [64] 
on some ~-lactam antibiotics: a comparison of 3D features of active A 3- 
cephalosporin (Figure 12.24a) and inactive Atcephalosporin (Figure 12.24b), 
extracted from the Cambridge database, indicates a clear geometry difference, 
suggesting an easy criterion for biological activity. However, active penicillin 
G (Figure 12.24c) does not match this pleasant picture, since its shape looks 
like that of inactive compounds. 

This puzzling situation comes from the fact that the geometry attributed to 
penicillin G was that determined by X-ray crystallography (and in the more 
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Figure 12.24 13 lactam antibiotics example (from Cohen [64] with permission). 
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Figure 12.25 3D features from X-ray data (from Cohen with permission [64]). 

stable crystal phase){Figure 12.25). However, this molecule can suffer an easy 
pseudo-rotation of the penam nucleus, leading to a conformation able to 
mimic the active compounds and only slightly hampered on energy 
considerations {probably less than 1 kcal/mol above the more stable 
conformation} (Figure 12.26}. Adaptation of the ligand to better fit the enzyme 
cavity gives an attractive interpretation of this apparent discrepancy. 

Many efforts concentrated on conformational aspects to take into account 
some flexibility of the ligand and of the receptor during the complexation 
process. In other words, in place of the common image of "lock and key", the 
model of "hand and glove" was substituted, both able to undergo some 
deformation for a better mutual adaptation. Within this framework various 
approaches have been proposed. They mainly work on interatomic distances, 
which appear more convenient than dihedral angles (although some 
redundancy is involved) to traduce the geometrical information, particularly 
for flexible rings. 

Active analogue approach 

In this first type of approach, proposed by Marshall et al. [4, 19-21], active 
molecules are superimposed in one of their possible conformations, so that 
important corresponding groups (the pharmacophore) coincide. To cope with 

Figure 12.26 Adaptation by pseudo-rotation (from Cohen with permission [64]). 
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conformational flexibility, each rotatable bond is rotated by a fixed increment 
and distances between atoms of the pharmacophore are systematically 
recorded for each conformation allowed {i.e. conformations not suffering from 
atom-atom overlap}. Sets of interatomic distances that can be achieved by all 
active molecules represent the possible pharmacophore geometry. 

This approach requires compounds homologous enough so that 
superimposition is unambiguous. Furthermore the conclusions are mainly 
qualitative [active vs. inactive), since no account is made of energetic factors 
(relative affinities, etc.). 

To make the derivation of the pharmacologically active conformations of 
acetylcholine and other agonists interacting with the muscarinic receptor 
easier, Schulman [65] proposed a novel model defining geometry with new 
parameters {rather than the usual dihedral angle}. So, dummy atoms are 
introduced, representing the location of a carboxylate oxygen of the receptor 
and an electrophilic site (such as a hydrogen bonding atom) located at the point 
of minimum electrostatic potential of the ester oxygen (at about 1.2 A of the 
oxygen atom}. These dummy points constitute some characteristic invariants 
of the receptor site, and the dihedral angle PNOQ an invariant of the possible 
drug receptor complexes {Figures 12.27). 

The same superimposition scheme is the basis of the model of Simon et  a]. 
[66]. Although less sophisticated in the treatment of steric effects, it (roughly) 
takes into account quantitative molecule-site interactions, mainly in terms of 
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PNOQ 

Figure 1 2 . 2 7  Symbolic structural descriptors. (a) Acetylcholine interacting with the 
receptor's carboxylate oxygen and an electrophilic group {here a hydrogen-bonding 
proton}, (b)symbolic descriptors: P corresponds to the oxygen location, Q to the 
minimum of the electrostatic potential near the ester oxygen, and the dihedral angle 
PNOQ is an invariant descriptor of the receptor-bound acetylcholine system (N atoms 
are depicted as, open circles, O atoms as closed circles} {from Schulman et al. with 
permission [65]}. 
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steric accessibility (hydrogen-bonding regions, hydrophobic pockets are not 
considered). Some other attempts to quantify the degree of molecular 
similarity, and to take into account energetic factors, have been published. So 
Hopfinger [22], in his molecular shape analysis approach, proposes to 
introduce the volume overlap (between the superimposed molecules)as a 
supplementary parameter in Hansch-type QSAR. In a later work [23], he 
calculated, via a molecular mechanics approach, an intermolecular potential 
field around a drug molecule, and used it as an indication of how it may 
interact with the site. This concept of an intermolecular potential in the 
surroundings of a macromolecule, approached here by means of the drug, is 
somewhat similar to that used by Goodford [31, 31a] to delineate favourable 
binding sites directly from the study of a known receptor. 

A similar concern appears in Kato et al.'s work, trying to obtain some 
information about the important regions of the receptor cavity from 
superimposition of a set of active compounds. Their RECEPS system [67, 68] 
emphasizes the fact that a superimposition scheme based on properties rather 
than on atom positions may be more fruitful, and allows for deriving a 
reasonable model of the active site, as exemplified by the enzyme 
dihydrofolate reductase. It is expected that such computer-originated models 
for describing the receptor environment would be of help for the chemist in 
modelling the most likely bound conformations and designing other active 
ligands able to bind the receptor cavity. 

Crippen's distance geometry and the ensemble approach 

We have already introduced the distance geometry approach of Crippen {see 
Chapter 7} as an alternative avenue for traversal of the conformational space. 
It corresponds to a Monte Carlo sampling within the constraints of the 
distance limits. Distance geometry is able to propose the possible conformers 
for an isolated molecule. In a set of molecules, it can also be used to determine 
upper and lower bounds for the distances between the pharmacophore groups 
over all conformations allowed. From these common upper and lower bounds, 
a 3D arrangement of site points can be generated, giving a binding site model 
which can be used to dock additional molecules and rationalize binding data. 

Complementing Crippen's earlier programs, an efficient algorithm has been 
proposed [69] within the framework of distance geometry. Rather than 
examining all sterically allowed conformations to derive the upper and lower 
distance matrices, one only uses a finite number of selected situations which 
can be viewed as discrete points in the conformational space. They are chosen 
by incrementing the conformational variables at regular intervals (sufficiently 
large so as not to multiply the number of points to examine). The distance 
matrix is now calculated from two successive conformations, which are both 
sterically or energetically allowed, and a "grace" value (minimum distance 
limit) is introduced for the superimposition. The advantage is that missing 
feasible binding modes is highly unlikely while maintaining reasonable 
computational tasks. 
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The ensemble approach: 
In the "ensemble approach", developed by Sheridan et  al. [70] for determining 
the feasible binding modes of flexible ligands on the receptor site, the classical 
distance geometry of Crippen is modified so that two or more molecules are 
treated simultaneously as a single "ensemble". In Marshall's and the original 
Crippen methods, individual molecules are first considered before examining 
the possibility of superimposition. In the ensemble approach, the 
superimposition of groups is assigned directly, since all molecules are treated 
together within an "ensemble". This allows for incorporating additional 
constraints, such as " e x c l u d e d  volume" information. Also, computation time 
is independent of the number of rotatable bonds. 

The approach can generate, in one step, coordinates for a set of molecules in 
their "active conformation", i.e. conformations such that their essential 
points can be superimposed. Among the main features of the method, we can 
note that all the coordinates for the various molecules investigated are 
included in the same distance matrix. However, additional conditions are 
introduced. So, whereas the lower limit L, is set to the sum of the van der 
Waals radii for two atoms (i and j) in the same molecule, on the contrary L, = 0 
when i and j are paired positions {from two different molecules) that can be 
superimposed. In that case, the upper U, is chosen equal to a small tolerance 
parameter (typically 0.3 A). That is, in the final structure, superimposed atoms 
may not be further apart than this tolerance value. Then the standard 
algorithm is followed. 

This approach has been illustrated for the vertebrate nicotinic acetylcholine 
receptor. Nicotinic agonists induce an open-channel form of the receptor. 
Antagonists bind to the receptor but do not open the channel. A common 
pharmacophore was extracted from four semi-rigid nicotinic agomsts: {-)- 
nicotine, (-)-cytisine, (-)-ferruginine methiodide and (-)-muscarone {Figure 
 2.28). 

/1 \ ,  

(-)-NICOTINE (+)-NICOTINE (-)-CYTISlNE (-)-FERRUGININE 
METHIODINE 

Agonists 

(-)-MUSCARONE (+)-MUSCARONE 

Figure 12.28 The ensemble approach (from Sheridan et al. with permission [70]). 
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Three essential groups were chosen: a cationic centre A {quaternary nitrogen 
or protonatable nitrogen), an electronegative atom or a centre which may act 
as a hydrogen bond acceptor B, and a third atom C Icarbonyl carbon or dummy 
atom at the centre of a phenyl ring) forming a dipole with B, and defining a 
direction along which a hydrogen bond is likely to form {Figure 12.29}. After 
generating several sets of superimposed structures, the only possible 
pharmacophore is derived, where points A, B, C form a triangle with sides 4.8 
,~ • 0.3 (AB), 4.0 ,/k + 0.3 (AC)and 1.2 ./k {BC). 

B 

C 

Figure 12.29 Deriving the only possible pharmacophore (from Sheridan et  al. with 
permission [70]}. 

Then for each individual agonist, conformations obeying the pharmacophore 
requirements are generated. The antagonists strychnine, trimethaphan, etc. 
also meet this triangle {Figure 12.30). 

Once the active conformations have been selected, docking them together 
{by superimposition of the essential atoms on to an ideal pharmacophore 
triangle) defines, by union of their volumes, that part of space that any agonist 
may occupy and so defines the handedness needed for fitting the cavity of the 
receptor and activating it [Figure 12.31 }. 

With such information about the volume that an agonist may occupy on the 
receptor and the pharmacophore geometry, one may start to design new active 
drugs that fit the model. 

( ~  �9 

STRYCHNINE TRIMETHAPHAN DIHYDRO-I]-ERYTHROIDINE 

Figure 12.30 Antagonists (from Sheridan et  al. with permission [70]). 
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Figure 12.31 
[7o]). 

Combined volume of agonists (from Sheridan et al. with permission 

Site modelling 
One of the important applications of distance geometry is in receptor site 
modelling, particularly regarding the binding of small ligand molecules to sites 
on proteins or macromolecules. Compared to other approaches developed in 
QSAR, using purely empirical correlations, the treatment proposed by Crippen 
emphasizes the spatial aspects of the problem [71]. It proposes a rationalization 
of the data thanks to an understanding of the actual mode of binding. A 
reasonable picture of the geometry of the site and plausible deductions as to 
the chemical nature of the binding sites can be so attained, allowing for 
heuristic indications in the design of new, more active inhibitors or drugs. 
Furthermore, as previously stressed, using a distance matrix (invariant under 
translation or rotation) avoids geometrical displacements involved in the usual 
docking studies. 

The approach relies on the following assumptions: 

�9 Binding is observed to occur on a single site of a receptor protein. 
�9 Each ligand has a given chemical structure and stereochemistry, but suffers 

from some flexibility due to rotation about single bonds. 
�9 No chemical modification of the ligand occurs during binding, although its 

conformation may change to better fit the receptor sites. 
�9 Such conformational changes involve small energy variations (as compared 

to binding free energy). 
�9 The observed free energy of binding may be calculated from additive 

interaction energies for all contacts between parts of the ligand molecule 
and parts of the receptor sites. 

�9 A slight flexibility is allowed for the receptor site, without energetic cost. 

From known drug structures, one constructs a geometry for the receptor and, 
given experimental free energies of binding, deduces possible binding sites in 
terms of geometry and the chemical character of the various parts of the site. 
Subsequent evaluation of interaction energy as a sum of pairwise terms then 
proposes the best binding mode. 

The ligand is represented by a collection of representative ligand points in 
space. These may be atoms (presumably involved in the binding process 
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according to the chemist's intuition) or dummy atoms which are likely to 
properly describe the interactions of parts of the drug molecule with the 
receptor macromolecule. The centre of a benzene ring may be a good 
descriptor for the location of the ring if binding is not specific of a given 
orientation of that moiety of the ligand, for instance, in a large receptor 
pocket. 

Once the ligand points have been chosen, the molecule is defined by a 
distance matrix gathering all distances between pairs of ligand points. To cope 
with conformational flexibility, the upper and lower triangles of this distance 
matrix represent, respectively, the upper and the lower limits of the distances 
for the different conformers investigated. Although some problems of 
correlated flexibility with cycles have been reported, this approximate 
description is quite convenient to condense conformational flexibility, a major 
problem in pharmacophoric pattern-search and receptor-mapping techniques. 
Note that from this matrix, usual distance geometry techniques allow for 
determining the coordinates of the points. 

Similarly, a binding site is proposed as a series of site points whose positions 
are specified in a fixed distance matrix (only small variations on site point 
distances are allowed). The number of these site points depends upon the 
details required for describing the receptor part. Site points are called filled 
(sterically blocked position, forbidden for any ligand point on binding)or 
empty (vacant position where a ligand point may come during binding). These 
are best thought of as corresponding in the real receptor to the locations of 
pockets of various types (accommodating a phenyl ring, an ethyl group, able to 
form a hydrogen-bond, and so on). 

Thanks to the description of both ligand and receptor by a set of discrete 
points, the binding mode is represented by a list of which ligand points 
coincide with which empty site points. It can be determined in a simple 
combinatorial way, searching for energetically favoured interactions and 
enforcing geometrical constraints. 

Two approaches have been developed. The first, if the number of points in 
each ligand is small, consists of automatically finding the simplest binding site 
consistent with the binding data. An exhaustive search of all combinations of 
the number of site points, their types, their distance matrix and their 
interaction energy matrix is carried out. In the second approach (more 
convenient in the usual case of more complicated ligands), one proposes a 
binding site and then the computer fits the data in an interactive "cut and try" 
fashion. 

Binding energy is calculated by a summation of contributions from all 
contacts between site and ligand points. These terms correspond to the free 
energy variation AG for the process: 

solvated ligand point 
+ 

solvated site point 
occupied site point 

The values are taken from a table where rows and columns correspond 
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respectively to the type of ligand points and site points. In a first step, this table 
is proposed by the user according to reasonable assumptions (and will be 
refined further as part of the fitting process). For example, a hydrophobic 
pocket may be attractive for a phenyl ring, but not so strongly attractive to an 
ionized group; some filled points may be highly repulsive for a t-Bu group, but 
mildly attractive to a methyl [71]. The experimental free energy of binding can 
be derived from the measured Is0 (millimolar concentration of an inhibitor 
required to produce 50% inhibit ion)thanks to the usual Michaelis-Menten 
model. 

Determining how complicated a site must be, in order to explain the 
experimental results, is not easy. Ordinarily, one begins by arranging some 
empty site points to match some common feature of the ligand structures 
"base group". Ligand points of the base group corresponding to a common 
geometrical arrangement (within upper and lower bounds) can be thought of as 
forming a pharmacophoric pattern, necessary for a ligand to be recognized and 
to bind to the receptor site. Other surrounding points are then introduced to 
accommodate the occurrence of various substituents on the ligands, i.e. groups 
occurring one or more times each in some, but not all, of the ligands. They 
often represent functional groups associated with only one ligand point, such 
as NH~-, S-. Rough interaction energies are used to ensure reasonable binding. 
Then the process is refined for an objective calculation of interaction energies. 

The key step in these two approaches is finding the optimal mode of binding. 
This is carried out by the following sequence: 

�9 All possible modes of binding are sought by systematically generating all 
possible combinations of contacts between ligand and site points (unused 
ligand or empty site points are allowed). 

�9 Various pruning steps on the proposed solutions eliminate contacts with 
unfavourable interaction energy or geometrically forbidden situations 
(distances between site points and between ligand points must match 
according to a given tolerance for flexibility). "Forced contacts" and 
chirality conditions are then examined. They correspond to contacts 
necessarily resulting from certain combinations of the contacts already 
chosen. When four points of a chiral quartet are involved in a contact 
combination, chirality of the ligand points and the site points must also 
match. 

�9 When a proposal has passed all the above tests, the corresponding binding 
energy is calculated. The solution retained corresponds to the minimal 
(more favourable)binding energy. Underlying this approach, therefore, is 
the concept that the ligand binds at the site in whatever conformation and 
orientation minimizes its free energy of binding. 

A least squares fit of the experimental free energy to a sum of interaction 
contributions is performed. If the binding scheme is correct, this should lead to 
a small residual error. Refined values of interaction energies between ligand 
and site points are then proposed. For outliers, additional hypotheses can be 
interactively introduced, imagining different binding modes to refine the 
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model. Poor agreement may arise from a choice of ligand points which does not 
adequately represent significant features of their structure. 

Once the binding mode is identified (fixing site points for each of the base 
and substituent sets), calculation of the coordinates of the associated site 
points is straightforward, giving a 3D representation of the corresponding part 
of the receptor. The exhaustive algorithm for deducing the site geometry and 
the interaction energy matrix and the interactive binding algorithm are 
described by Crippen [71 ]. 

The example of substituted phenoxyacetones R-C6Hs-OCH~-CO-CH3 
(chymotrypsin inhibitors)allows us to give some details about the approach 
[71]. In a first step, the molecules can be represented with three ligand points 
corresponding to the carbonyl carbon, the ether oxygen and the centre of the 
phenyl ring (Figure 12.32). 

Empty site points will be associated with these ligand points, but other site 
points are necessary to interpret the fact that the binding site can 
accommodate an m-methyl, but not two m,m'-methyl, groups (Figure 12.33). A 
first additional binding site (4) is provided for the m-methyl. To treat the low 

Figure 12.32 Selection of ligand points (represented by 
dimethylphenoxyacetone (a chymotrypsin inhibitor). 

dots) for m,m'- 

2 

O 

J . .  
CH3 CH2 

Figure 12.33 Binding site for chymotrypsin inhibitors. Site points are represented by 
large spheres, ligand atoms by small spheres. Site points (1) and (2) coincide respectively 
with the carbonyl carbon and the ether oxygen, and site points (4) and (5)to the methyl 
groups (see text). This molecular orientation would be stcrically unfavourable (adapted 
from Crippen with permission [71]). 
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affinity of the m ,m '  derivative, it is necessary to include a repulsive site point 
(in (5}), but this is not sufficient, since the phenyl would then be able to rotate 
so as to avoid this unfavourable site point (5). So three additional repulsive site 
points (in (6-8))are introduced, 3 A apart from the phenyl site. 

Interestingly, from the refined values of binding contributions, some insight 
can be gained as to the nature of the interactions. Point (1) is presumably 
associated with an H-bond donor to the carbonyl, point (2)corresponds to a 
polar pocket, and point (3) to a strongly hydrophobic region for binding the 
phenyl group. It may be thought as "the center of a structured pocket 
surrounded by sterically repulsive regions (5-8) and a small pocket (4)" which 
can accommodate  one methyl  group. Furthermore,  Crippen was able to 
tentatively locate these binding points by respect to the chymotrypsin  
residues, in a proposal consistent with some X-ray data [71, 72] (Figure 12.34). 

As a concluding remark, one can note that  Crippen's approach gives 
information not only about the geometrical requirements,  but also about 
interaction energy, and focuses on building a discrete model of the receptor site 
which allows a more thorough and realistic examinat ion of all modes of 
interaction with  each drug molecule. 

A major problem with respect to the general applicability of the method 
arises from the type of data needed [71]: the data set mus t  contain various 
classes of structurally diverse ligands to give significant indications on the 
geometry of the site. It must  also be large enough to allow statistically sound 
derivation of the interaction contributions. Dissociation constants of the 

Figure 12.34 A possible positioning of inhibitor m,m-dimethylphenoxyacetone 
{heavy lines) in the active site of t~-chymotrypsin. Light lines indicate residues of the 
active site {some sequence numbers are shown) and dots the site points. The ligand's 
carbonyl is near the side chain oxygen of serine 195 in the foreground. Points [4) and [5) 
are in the plane of the ligand phenyl ring {respectively at the right and left sides). Site 
points [6) and [7) are above and below this plane, and point [8) is in the background in 
the plane {dashed lines are drawn only to convey a sense of depth){from Crippen with 
permission [71]). 
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ligand-receptor complex must  also be available to derive the free energy of 
binding. 

Finally, as for any other approaches (except, of course, direct X-ray 
measurements  of the ligand-receptor complex), this receptor mapping 
procedure only generates a possible mode l  for the binding site of a receptor 
protein, corresponding to necessary (but not sufficient) conditions for an 
allowed binding mode. 
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Proteins are the focus of constant and prominent interest in molecular 
modelling applications, in view of their key role in nearly all biological 
processes. Among their main functions one can note enzymatic catalysis, the 
transport and storage of small molecules or ions, transmission of nerve 
impulses, control of growth and differentiation, immune protection (anti- 
bodies), hormones, repressors, coordinated motion, mechanical support, etc. 

Proteins are built from a basic set of 20 (naturally occurring)amino acids 
linked together by peptide bonds to form large polypeptide chains (typically 
from 100 to about 1000 amino acids). A peptide bond links the carbonyl of one 
amino acid and the amino group of the next one. These amino acids are 
identified by either a three- or one-letter code (see Table 13.1), and by 
convention the polypeptide chain is written starting from the amino end 
towards the carboxyl terminal residue. Despite this small number of 
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Table 13.1 The  20 na tu ra l ly  occurr ing  a m i n o  acids found in prote ins  

H O O C - C H R - N H ~ ) .  
, 

Structure of R Name Abbreviation 

R is att).l 
- H Glycine Gly G 
- CH, Alanine Ala A 

CH(CH~, 2 Valine Val V 
CH2CH(CH ~) ~ Leucine Leu L 
CH(CH3)CH2~H 3 Isoleucine Ile I 

R contains an OHgroup 
- CH~OH Serine Ser S 
- CH[CH3)OH Threonine Thr T 

--6d-"jNt -- OH Tyrosine Tyr Y CHz 
X K . . . Y  

R contains sulphur 
- CH~SH Cysteine Cys C 
- CH~CH2SCH 3 Methionine Met M 

R contains a carboxyl or amido group 
. CHaCO~H 

CH2CH2CO2H 
CH2CONH 2 
CI=I2CH2CONH 2 

R contains a basic amino group 
- CH~CH~CH2NHC(NH)NH 2 

CH2CH2C IH~CH2NH2 

N 
I 

H 

R contains an aromatic group 

- CH 2 - ~  

N 
I 

see above H 

imino acid (complete structure) 

_ ~ C O z H  

I 
H 

Aspartic Acid Asp D 
Glutamic Acid Glu E 
Asparagine Asn N 
Glutamine Gin Q 

Arginine Arg R 
Lysine Lys K 

Histidine His H 

Phenyl Alanine Phe F 

Tryptophane Trp W 

Tyrosine Tyr Y 

Proline Pro P 

I largely hydrophob ic  / i largely hydrophi l ic .  T h e y  are respec t ive ly  
a lmos t  a lways  found  on the  in te rna l  part  ( I )  or the  externa l  part  (i)of 
g lobular  proteins .  
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Figure 13.1 The peptide bond: a planar and rigid arrangement. Bond lengths (A)" C'O 
1.24, C'N 1.32, C'C~ 1.53, NC~ 1.47; bond angles (~ C~-C'-N 113, C'-N-C~ 123, 
N-C~-C' 110 (from Stryer with permission [ 1 ] p 29). 

elementary bricks, there is a huge diversity in assembling them in a 
polypeptide chain to obtain an enormous number of structures, largely 
differing in shape and function: each protein corresponds to a specific 
arrangement, which is genetically determined (Figure 13.1). 

Except for glycine, all intervening amino acids are chiral molecules, but only 
L-enantiomers are found in proteins (Figure 13.2). Some proteins also contain 
special amino acids formed by modification of naturally occurring amino 
acids. For basic features and properties on proteins, see elsewhere [1-5]. 

All amino acid residues share a common CO-CHR-NH moiety; but they can 
be subdivided according to the nature of the side chain R: hydrophobic alkyl or 
aryl groups; highly polar groups either neutral (hydroxyl, amide} or ionized 
(acidic: carboxyl, basic: ammonium); planar rigid aromatic groups, sulphur 
containing. Some of these characteristics of side chains are reflected in the 'H 
NMR spectrum: for instance, protons attached to an aromatic ring and amide 
NH appear at low field. Resonance signals of methyl groups are generally 
shifted upfield as they are subject to local ring current fields. 

+ 

NH 
3 

H // "''''.. CH3 

CO 
2 

Figure 13.2 Absolute configuration of L-Alanine. 
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Owing to the complexity of such systems, various levels of simplification 
have been introduced, for both structural description and display, depending 
upon the nature and precision required for a selected application. 

13.1 STRUCTURAL ANALYSIS 

Determining the 3D structure of a protein can be roughly presented as 
hierarchically solving: 

�9 Primary structure: identification of the amino acids present (intra-residue 
assignments) and determination of their sequence in the molecule (inter- 
residue or "sequential" assignment). Chemical methods exist, but we will 
mention here only spectroscopic approaches mainly based on NMR. 

�9 Secondary structure: recognition of rigid regular regions such as ~-helices, 
[3-sheets, etc. 

�9 Tertiary structure: specifying the relative locations of these motifs and 
looking at the overall 3D appearance. 

Hydrogen-bonds, between the carbonyl group of one residue and the amino 
group of another, play a preeminent role in the building of regular structures in 
proteins, with tx-helices and ~-sheets as the most characteristic patterns: 

C = O  ...... H - N  

In an ix-helix, the polypeptide chain is tightly coiled in a helical array with 
the side chains of the constituting residues directed outwards, the screw being 
right handed [clockwise). The structure is stabilized by a net of H-bonds 
between the carbonyl groups and the NH groups situated four residues ahead, 
all the CO and NH of the polypeptide chain being bonded. The pitch of the 
helix is 5.4 ]k or 3.6 amino acid units, each residue being related to the next one 
by a rotation of 100 ~ and a 1.5 ]k translation along the axis. Starting from the N 
terminal end {supposed at the bottom of the scheme), CO groups are oriented 
upwards [towards N atoms situated above) and H-bonds are roughly parallel to 
the helix axis (Figure 13.31. The 3,o helix (sometimes found) corresponds to a 
variant of ~ helix with 3 residues per turn, instead of 3.6. 

Another regular structure corresponds to [3 pleated sheets: the chains are 
almost fully extended (with a distance between following residues of 3.5 A) and 
gathered in sheets of (generally)3-5 strands. Stabilization is ensured by 
hydrogen-bonds between NH and CO groups from different polypeptide chains 
(contrary to (~-helices, where stabilization occurs in the same chain). Adjacent 
strands can run in the same direction (parallel ~-sheet (~p)or opposite 
directions (antiparallel [3-sheet (13)}. Side chains are, alternatively, up and down 
with respect to the mean plane (possibly leading to steric repulsions between 
chains) (Figure 13.41. 

Collagen, present in skin, bone and cartilage, involves repeated sequences of 
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" 6 o, 

10 

I I  

i l l  
i f l  

i ,  

I i  

(a) (b) (c) 

Figure 13.3 cx-helix representation (a) and schematic models (b) and (c) indicating only 
the main-chain atoms (b)or locating the a-carbons on a helical thread (c). In (a)and (c) 
broken lines identify hydrogen-bonding between NH and CO four residues apart 
(adapted from Stryer with permission [1] p 29). 

Figure 13.4  Schematic structure of an antiparallel [3-sheet. Broken lines symbolize 
hydrogen-bonds. R groups are alternately above or below the mean plane of the sheet 
(adapted from Stryer with permission [1] p 31). 
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Gly-Pre-Pro arranged in another helical motif (called a type II trans helix). 
Stabilization is here ensured by mutual repulsion of the pyrrolidone rings of 
the proline residues. In collagen, three helices wind around each other, leading 
to the constitution of fibres of remarkable strength. Glycine (one for each 
three-residue unit), with its side chain limited to a hydrogen atom, is necessary 
for reducing steric interactions inside this triple stranded helical cable. The 
pitch of this superhelix is about 3.3 residues per turn (corresponding to 2.9 A) 
(Figure 13.5). 

(a) 

C 

( ) 

Figure 13.5 Collagen structure. (a) Single strand helix (dark line shows the main chain 
�9 "NC~C .... in the sequence -Gly-Pro-Pro-Gly-Pro-Pro-); (b)model of the triple-stranded 
collagen cable ((x-carbons only} (adapted from Stryer with permission [1] p 188). 

Frequently, chain direction can be abruptly reversed in a [3-turn, 
corresponding to an H-bond formation between a CO group and an NH group 
three residues apart. ~-turns occur between four residues when the distance 
C,-C~+~ is less than 7 A and O~-Ni§ < 3.5 A (Figure 13.6). 

They are more frequently observed with D,G,S,P, at the end of {x-helices, at 
the folding of a ~-sheet, in the junction between helices or between a helix and 
a [3-sheet, or in disulphide-bridge stabilized structures. According to the 
torsional angles for residues i, i+1 and i+2, eleven types of [3-turn have been 
identified. Proline has a high probability of being involved in such turns. 

Tertiary structure refers to the overall shape of the protein. This division 
between secondary and tertiary structure may appear somewhat artificial. It 
corresponds to the fact that tertiary structure more directly relies on the 
interactions between residues far apart in the sequence (H-bonding and 
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| | 

Figure 13.6 Two examples of ~-tums (adapted from Cantor and Schimmel with 
permission [2] p 95). 

covalent disulphide bonds resulting from the oxidation of SH groups of 
cysteine) {Figure 13.7). 

The overall shape distinguishes fibrous from globular proteins. Fibrous 
proteins such as keratins [from skin or hair} comprise an important proportion 
of ~-helices joined by disulphide bonds between chains thanks to cysteine 
units. The particular structure of collagen has been indicated above. Silks 
lsuch as fibroin from a spider's web or a cocoon) corresponds to stacked ~- 
sheets, leading to flexible but poorly extensible structures. Globular proteins 
[water soluble), involving enzymes, hormones, transport or storage proteins, 
have a roughly spherical shape. 

Finally, quaternary  structure refers to aggregates that more easily keep the 
non-polar parts out of the aqueous cellular environment {Figure 13.81. 

13.2 REPRESENTATION 

For such large systems, it is very difficult to find a simple way in which to 
express the global shape. Solid models {space filling or wire-frame modelsl, and 
more recently computerized images, give attractive representations, allowing 
for a rapid perception of essential features, but such representations cannot be 
easily input into quantitative models. 

Owing to the size of such systems, it would sometimes be difficult to display 
all of the atoms, as is commonly done for simpler molecules {see Chapter 31 in 
the usual CPK representations. Of course, for specific purposes a part of the 
protein can be represented at the atomic level: for instance, one can represent 
the subset of atoms constituting the active site in order for studying the 
electronic and steric requirements when binding a drug. However, in many 
cases, the point is only to express the overall shape and demonstrate 
relationships between families. In such cases, schematic representations, 
using as graphical primitives symbolic icons which are simpler to generate, are 
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Val- Leu- Ser- G Iu- G iy -  G lu- Trp-  G In- Leu- Val-  
10 

NA! NA2 A1 A2 A3 A4 A5 A6 A7 A8 

Leu-H~s- Va I -T rp -  A la -  Lys- Val -G lu -A la -Asp -  
2o 

A9 AIO A l l  A12 A13 A14 A15 A16 A81 B1 

V a I - A l a - G l y -  Has- Gly -G in -Asp-  lie -Leu- lie - 
30 

B2 B3 B4 B5 86 B1 B8 B9 BIO B11 

Arg-Leu-Phe-  Lys- Set-  Hgs- P r o - G l u - T h r - L e u -  
40 

B12 B13 B14 B15 B16 C1 ('2 C3 C4 C5 

Glu-Lys-Phe-Asp-  Arg-Phe-  Lys- H~s-Leu- Lys- 
50 
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Figure 13.7 Representation of myoglobin {oxygen carrier to muscles}, a protein of 153 
residues. The molecule comprises eight segments of a-helices {with proline in four 
turns}. The external region is the most polar one, the internal part the most 
hydrophobic, except for the polar groups of two histidines near the active site. The 
haema group {oxygen binding site} is bonded to histidine nitrogen. A second histidine 
non-bonded to central iron lies nearby. (a) Sequence of amino acids (the label below 
each residue refers to its location in an tx-helical region A-H or in a non-helical region 
between two helices} after Edmundson with permission [128] and Watson with 
permission [129]; {b)only tx-carbons are shown after Dickerson with permission [130] 
(from Stryer with permission [1] p 49 and Martin et  al. [4] p 47); (c) schematic 
representation of the eight a-helices by cylinders (modified from Widom and Edelstein 
with permission [5] p 555). 
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Figure 13.8 Haemoglobin. Two a-polypeptides with 141 amino acids and two ~- 
polypeptides with 146 residues are assembled in a tetrahedron (from Widom and 
Edelstein with permission [5] p 556). 

very useful for a rapid perception of essential features of the secondary and 
tertiary structures, the hydrophobic character of various surface areas, and so 
on (see Plate XIX). 

In the most simple representations, only a-carbons are considered. The 
structure is schematized by a succession of line segments connecting the 
a-carbons in the sequence order: these segments are called virtual bonds. 
a-carbons are also the basic elements of the model-builder of Toma: virtual 
C~-C~ bonds are drawn with a fixed length of 3.8 A between neighbouring 
atoms (except in some cis peptide bonds). The geometrical adjustment is 
carried out via the angles formed by three successive C~-C~ bonds. These 
angles, which are allowed to vary from 60~ ~ , are good indicators of the 
secondary structure, and are easier to adjust than actual dihedral angles [6]. A 
crude volume representation can then be achieved by colour encoding 
spheres centred on ~-carbons and assumed to represent the various amino 
acids. The formal chain joining the a-carbons is also the basis of the rapid 
automatic procedure for recognition of a user-defined pattern proposed by 
Brint et al. [7]. 

More refined graphic primitives were also used for an easier perception of 
regular arrangements: in such displays a-helices are generally represented as 
cylinders or regular coils, and ~-strands as arrows. Random coils are drawn as 
single line virtual bonds, constrained to meet the end points of icons 
representing the regular patterns. 

A drawing program working on a calligraphic device, for real time 
interactivity, has been proposed by Burridge and Todd [8]. For cylinders or 
regular coils representing a-helices, the axis is placed using the mean 
coordinates of the first and third residues as the starting point, and of the third 
from last and final ones as the end point. The radius is chosen as 2.5/k. For 
connection to other moieties, the starting and end points are located on radial 
vectors joining the axis to the starting and end carbons, with a length adapted 
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to the diameter. The pitch of the coil is 3.6 residues per turn, but other values 
can be selected. 

~-strands are shown as broad arrows. For each sequential peptide, edges are 
defined initially by the t~-carbon, carbonyl carbon and amide nitrogen, which 
fix the orientation of the planar peptide unit. Then points are smoothed with a 
simple formula ("average points i and i-1 and i and i+1, then average the 
averages"). Virtual bonds, used for randomly coiled chains, are constrained to 
meet the end points of the ix-coil, the axis end point for ix-cylinders and the 
centre points of the arrowhead or tail for ~-strands. Similar programs have been 
implemented on raster devices [9, 10]. 

Other representations consist of ribbon models [11] adapted from the model 
of Richardson [12]. The ribbon is composed of approximately parallel smooth 
threads running along its length (for instance, 3 /~  in width for a secondary 
structure, 1 /~ for turns and random coils)(Figure 13.9). These threads are 
drawn thanks to ~-spline functions. A series of closely spaced guide points is 
generated in the peptide planes, the basis of the construction. They lie on a line 
halfway between the a-carbons, and are equally spaced along the ribbon width 
desired. Things are easier when splines are available as built-in functions of the 
graphical device (as offered by various workstations), but an algorithm has also 
been proposed to generate them by software [13]. From the adjacent ~l-splines, 
a network of quadrilaterals can be drawn and rendered as filled areas leading to 
a solid surface model on a raster device. The method was extended to nucleic 
acids, with guide points based on a vector centred at the phosphate's position 
and directed towards the Os atom of the phosphate-sugar backbone. 

Also relevant to the simplification of 2D representation, making it possible 
to see the essential features of the whole molecule at a glance, is the map 
projection of protein charge distribution [14]. Whereas, in a usual screen 

_ _  0 
. . . .  - - -  . . . . . . . . . .  

_ 

(a) 

(b) 

Figure 13.9 Ribbon model. (a)Creation thanks to 13-splines (the guide points are 
located on a line in the peptide plane half way between the (x-carbons); (b) resulting 
display (from Carson [ 13]). 
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representation, it is impossible to view the entire surface in a single figure (for 
the entire globe as for a globular protein), one half of the shape being hidden, it 
is possible to represent the whole surface on a single cont inuous projection 
map. H a m m e r  projection wi th  eight equal area projections was selected, as it 
suffers from less distortion. For example, such maps can be used to identify 
surface hydrophobic patches by displaying the distribution of polar/apolar 
groups on the protein's surface. H a m m e r  projections (x,y) are calculated from 
the polar coordinates (r,0,~)from: 

x = [ 2 . 2 ] / ~  r c o s  0 .  s i n ( @ / 2 ) ] / [ 1  + c o s  0 - c o s ( @ / 2 ) ]  '/~ 

y = [2 'p r sin 0]/[1 + cos 0. cos(O/2)]" 

where r is the radius of the globe being generated (Figure 13.10). 

1 3 . 3  D E T E R M I N A T I O N  O F  G E O M E T R I C A L  D A T A :  2 D  N M R  I N  

P R O T E I N  S T R U C T U R E  A N A L Y S I S  

The Brookhaven Database const i tutes  the main  source of 3D coordinates for 
proteins, wi th  about 3500 entries (October 1995), originating mainly  from 
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F i g u r e  13.10 Hammer map projection (from Barlow and Thornton [14]). (a) Segments 
of a generating globe {parts 5-8 correspond to the rear region) and (b) the resulting map; 
(c) representation of the distribution of the charged groups in Ferredoxin. 
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crystallographic studies. Further information on the Protein Database (PDB), 
which has become a reference and invaluable tool in the field of protein 
modelling, is detailed in Chapter 4. However, NMR, with its newly extended 
capabilities, coupled with computer simulation, is becoming a very useful and 
widespread tool in the field. 

For smaller polypeptide systems (< 100 amino acids), NMR techniques are 
now able to completely assign the resonance peaks and propose 3D structures 
within a 2.0-2.5 A accuracy, comparable to the resolution obtained in 
crystallographic studies. We have already cited the work of Havel and 
W~ithrich [15] on basic pancreatic trypsin inhibitor (a small protein of 58 
residues), where NMR data and a distance geometry approach lead to a model 
reproducing the crystal structure with a good accuracy. 

With larger systems, however, it was not feasible until recently to assign 
even about one half of the amino acids present without the help of X-rays. 
Large spectral overlap (due to the number of residues) generally makes it 
possible to only assign resonances from the extremities of the spectrum, 
taking advantage of ring current effects in the vicinity of aromatic systems, 
changes induced by pH variations (indicators of neighbouring ionizable 
groups), and so on. Although structure determination for large systems (15-20 
kDa MW) still remains a formidable challenge, improved resolution by 
increasing the dimensionality of the spectrum (thanks to heteronuclear 3D or 
4D NMR) overcomes some of the problems arising from shift overlap, 
degeneracy and linewidth effects, and provides an attractive and quite efficient 
methodology. 

On the one hand, NMR is a useful complementary technique to X-ray 
crystallography for proteins which do not easily form crystals. On the other 
hand (and this is perhaps the more important point), NMR provides 
information for liquid samples, which more closely look like the natural 
physiological environment. Such measurements also allow for the 
investigation of rational changes in pH, temperature or ionic strength, and give 
some insight about the structural similarities between crystalline and non- 
crystalline states. For instance, it appears that NMR coupling constants 
predicted from crystal geometry (through Karplus laws)often fit the measured 
couplings well, showing that side chains in the interior of the protein are 
blocked in a rigid spatial orientation. For surface residues, however, rapid 
averaging between several orientations may be observed [16]. Similarly, it was 
shown that "the s-amylase inhibitor Tendamistat (with 74 residues) has the 
same globular architecture in crystals and solution, but localized differences 
appear near the surface, including the active site." In other cases, differences 
are more drastic, including most of the cooperative bonds linking metal ions to 
the polypeptide chain [17, 18]. 

Finally, changing the conventional picture of a static system derived from X- 
ray crystallography, some dynamic information is available through NMR, 
regarding both low frequency processes (exchange of labile amide protons, for 
example, loss of tertiary structure by denaturing agents) and high frequency 
motions such as those occurring during libration of flexible side chains, 
isotropic tumbling of globular proteins, flipping of aromatic rings, etc. [16]. 
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Apart from complete structure determination, an important application area 
relies on the study of protein-substrate interactions in a solution state. Suffice 
it here to have some assigned protons at various points of the structure and 
look at the changes of their chemical shifts under selective perturbations (salt, 
temperature effects, presence of inhibitors of enzyme action): any change 
indicates that the corresponding residue is likely to be involved in the 
interaction process [16]. 
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Figure 13.11 'H NMR spectra of amide tripeptide NLe-Asp-Phe-NH2 at 270 MHz in 
DMSO. (a) 1D spectrum; (b) 2D COSY. (c) 2D NOESY. (NLe nor-Leucine, a natural, non- 
essential amino acid, with a R = n-Bu side chain)(J. Gharbi with permission). 

The main tools currently used for such analyses come from 2D homonuclear 
(and more recently, 3D heteronuclear) NMR, which specifies sites correlated 
through space or through scalar coupling. The basic principles of such 
experiments have already been presented in Chapter 4. Indeed, Nuclear 
Overhauser Enhancement is the source of excellent and varied information: 
within a single amino acid (to determine its nature, in complement to COSY 
data), between neighbour amino acids (to fix their sequencing), and between 
distant residues (i, i+2 or more) to identify regular 3D motifs in the secondary 
structure (Figure 13.11). Particularly important are NOEs between residues 
that are far apart in the sequence but close together in space, to detect folding 
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of the backbone or side chains. Scalar couplings related to torsion angles, 
specific effects on selected chemical shifts or the examination of hydrogen 
bonds can also be of help. 

To mimic the physiological conditions, experiments are generally carried 
out in water solutions (about 1-5 mM), but this requires the elimination of the 
exceedingly strong solvent signal which can mask some signals of the 
substrate. Solvent-peak suppression can be achieved using various techniques. 
Otherwise, use of D~O avoids such strong solvent signals, and furthermore, 
simplifies the spectrum. For example, spectra run in D20 exhibit a clearer low 
field region: labile amide protons are exchanged, and the suppression of 
couplings to ~-NH simplifies the ~-CH and ~-CH.Hb signals. 

13.3.1 Sequence assignment 

In the typical case of smaller systems, the first task is of course to determine 
what amino acids constitute the polypeptide chain. From spectra in H~O, the 
spin system of the present residues NH C~H C~H.IHB) can be identified. For the 
20 essential amino acids, COSY and RELAY connectivity peaks gather in 14 
characteristic fingerprints [among which four are for aromatic protonsl [19, 
20], easily identified thanks to coupling between ~, ~ and y protons. 
Information is gained through COSY spectra for C~H/NH correlation and 
CoH/NH in RELAY spectra [Figure 13.12). This point was developed in 
Chapter 4. For a random chain organization, tables specify proton chemical 
shifts {at pH - 7} and 3J.N~ or 3j~ coupling constants [21]. These values, 
providing a significant reduction of assignment possibilities, are of definite 
help in protein analysis [Table 13.2}. 

Once the constituent amino acids are known, the next problem is to 
determine in what order they are linked together. This is the sequence specific 
assignment, which is mainly performed from the NH and H~ peaks in COSY 
and NOESY spectra. COSY and RELAY spectra indicate connectivities within 
the amino acid residues, via scalar coupling constants between protons 
separated by no more than three bonds (COSYI or via couplings relayed by a 
common proton (RELAY). The NOESY spectrum specifies dipolar correlation 
between neighbours that are close in space rather than in sequence. 
Determining such neighbourhood relations allows for specification of the 
relative position of a residue within the chain. Besides intra-residue 
correlation (also detected on COSY spectra}, between NH; and czCH; (dN~,.~), the 
main NOESY information is here given by inter-residue cross peaks Ncz,.,+,~ 
between the czCH of residue i and NH on residue i+1 (d~); and NN,.i+I~, between 
NHi and NH,+~ (d~) (see Chapter 4). Starting with one characteristic peak, 
intra-residue correlation identifies the NH peak of a given residue and inter- 
residue analysis determines which residues are sequentially related. Such 
relations between protons in neighbouring residues are sufficient to match a 
dipeptide motif, if this dipeptide segment is contained only once in the amino 
acid sequence. Otherwise, tri- or tetra-peptide segments are studied {such 
motifs seldom occur more than once in globular proteins). 
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T a b l e  13.2 'H NMR parameters of the 20 common L-amino acid residues in the linear 
tetrapeptides H-Gly-Gly-X-L-Ala-OH (from Bundi and Wiithrich [21]). 

Amino Chemical shifts 
acid (from TSP + 0.002 ppm) 

residue NH~ CH~ CH~ 

Spin-spin coupling 
constant J (+ 0.5 Hz) 

others ej.~_~r ~ ej~ 

Gly 8.391 3.972 5.6 
Ala 8.249 4.349 1.395 6.5 7.0 
Val 8.436 4.184 2.130 7CHe 0.969 7.0 6.9 

0.942 
Ile 8.195 4.224 1.894 7CH2 1.478 7.0 7.6 

1.190 
CcHe 0.943 

He 0.885 
8 . 4 ,  ,1.64 1 ,1.64 , 

(1 ~ C  0.943 7.2 He .649} 
0.899 

Ser b 8.380 4.498 3.885 6.5 5.1 
3.885 5.1 

Thr 8.236 4.346 4.220 7CHe 1.232 6.9 5.0 
Asp b 8.410 4.765 2.837 7.0 5.7 

2.753 8.3 
Glu 8.368 4.295 2.092 7CH2 2.314 7.0 4.6 

1.969 2.283 9.5 
Lys 8.408 4.358 1.870 7CH~ (1.471) 6.5 5.6 

. ~ C  ( 1 )  .708 7.8 1 747 H2 
eCH2 3.023 
eNHe § 7.519' 

Arg 8.274 4.396 1.915 7CH2 (1.719) 6.9 5.5 
1.796 ~5CH2 3.312 7.6 

NH 6.622' 
7.166" 

Asn b 8.747 4.755 2.831 7NH2  6.912" 7.5 5.8 
2.755 7.591' 8.3 

Gin 8.411 4.3 73 2.131 ~CH2 2.3 79 6.0 5.0 
2.010 8NH2 6.875' 8.8 

7.594" 
Met 8.418 4.513 (2.164) 7 C H 2  (2.633) 5.7 

(2 .000) (2.633) 8.6 
eCHe 2.128 

Cysc 8.312 4.686 3.278 7.7 4.0 
2.958 9.6 

Ring Protons 
Trp 8.094 4.702 3.322 C2H 7.244 6.0 

3.195 C4H 7.649 7.8 
CSH 7.167 
C6H 7.244 
C7H 7.504 
NH 10.220" 

Phe 8.228 4.663 3.223 (7.339) 9.4 5.6 
2.991 10.3 

Tyr 8.183 4.604 3.127 C3,5H 6.85 7 6.8 5.6 
2.922 C2,6H 7.149 9.0 

His 8.415 4.630 3.263 C2H 8.120 8.0 6.0 
3.198 C4H 7.140 6.9 

Pro b'd 4.471 (2.295) 7 C H 2  (2.030) 8.8 
(1.981) ~5CH2 3.653 5.0 

aConditions: solvent D20 (H20 for labile H), pD 7.0, t--35~ 
bData from the protected peptides CGCO-Gly-Gly-X-Ala-OCH3. 
~ in Z-Gly-Gly-Cys-L-Ala-OH where Z = carbobenzoxy protecting group. 
dOnly the parameters for trans Pro are given. 
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For larger proteins (MW from 10,000 to 20,000), however, many CH= and amide 
protons have shifts that are very close, limiting such sequential assignment 
techniques. Isotope labelling then becomes a possible solution. 

13.3.2 Secondary structure determination 

Once the sequence (primary structure) is known, we now have to determine 
the spatial location of atoms, that is the secondary structure. Karplus laws for 
coupling constants and NOESY experiments are the main tools in this field. 

Torsional angles 
According to IUPAC conventions, the conformation of an amino acid in a 
polypeptidr chain is defined by four angles (Figure 13.13, Tables 13.3, 13.4). 

The torsion angle H-N-C-H~ (0 = ~-60" for L-amino ac ids )and  the 
corresponding ~J obey a Karplus law [23-26]' from which it can be deduced that 
~J.,~ < 5.5 Hz corresponds to �9 between -60" and 40"; whereas 3J.N~ > 8 Hz 
corresponds to �9 between -80" and-160" [27, 28]. 

Only three values (60", -180", -60") are possible for X,, due to energetic 
reasons. Similarly, a Karplus relationship relates ~, to the coupling constant 
3j~, itself related to the percentage of the three more stable rotamers around the 
C~-C~ bond [29]. 

The ~ angle is not directly related to any H-H coupling. However, possible 
values can be derived from sequential NOE d~,.~§ and d~,~,.,§ Finally, d ~  

values are related to the pair of angles 4>, ~ as indicated in a Ramachandran 

.r162 "~ ~ q 

%e "~x~ O i  \\ 

\ ~ Ci __f-ANi + I 

~_~Hi C> NHi 

oi-I 

Figure 13.13 Four torsion angle scheme, m is 0 ~ for a cis arrangement of the main 
chain and 180 ~ for a trans one. ~ and �9 define the orientations around the N-C. and 
C.-G0 bonds (and take a 180 ~ value for an extended transconfiguration). The X angles 
specify the orientation of the side chain with respect to the backbone and within the 
side chain. 
~J~. = A cos28 - B cos 8 + C; coefficients proposed for proteins: A = 6.4, B = 1.4, C = 1.9 t-Iz. 
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Table 13.3 Angles of rotation in the backbone (in polypeptides of L-amino acids). 
Adapted from Scheraga [22], assuming �9 = ~ = 180 ~ for a fully extended chain. 

�9 (rotation around N-CJ (rotation around C~-C) 

180 ~ C~-C' cis to N-H 
-60 ~ C~-R cis to N-H 
60 ~ C~-H cis to N-H 

180 ~ C~-N cis to C-O 
-60 ~ C~-H cis to C-O 

60 ~ C~-R cis to C-O 

Table 13.4 Angles of rotation for some regular structures. Adapted from Scheraga [22], 
assuming O = ~g = 180 ~ for a fully extended chain. 

F u l l y  e x t e n d e d  c h a i n  180 ~ 180 ~ 

R i g h t  h a n d e d  {x-helix - 5 8  ~ - 4 7  ~ 

Pa ra l l e l  p l e a t e d  s h e e t  - 1 1 9  ~ 113 ~ 

A n t i p a r a l l e l  p l e a t e d  s h e e t  - 1 3 9  ~ 135 ~ 

C o l l a g e n  ----60 ~ - 160 ~ 

map [30] ~. In such a map, energy contours delineate the values allowed for 
angles �9 and ~ so as to avoid steric interactions for rotations along C, C,~ (~) 
and C,~Ni (O). With an amide group fixed in a trans form, such rotations are 
interdependent in a given residue but are sterically independent of rotations 
within neighbouring residues (Figure 13.14). 

Regular  m o tifs 

An important  aspect of the determinat ion of the secondary structure is the 
recognition of regular rigid domains, mainly m-helices and ~-sheets, leading to 
characteristic patterns. NOE is particularly useful for looking for residues that 
are close in space rather than neighbours in the sequence. 

In m-helices (comprising about 3.6 residues per turn), residues m position i 
and i+3 are approximately 4 A apart, and are therefore able to exhibit NOE 
effects, whereas in an extended form they would largely be too distant (more 
than 10 A a p a r t ) f o r  any NOE enhancement .  Characteristic values are 
summarized in Tables 13.4 and 13.5. 

Short sequential distances dNN, small successive vicinal couplings 3JN.~ (about 
4 Hz), and slowed exchange rates of amide protons have been reported as other 
indicators of m-helices. Corresponding patterns are also available for other 
regular structures; ~-sheets, tight turns, etc. [17, 19]. For instance, in ~-sheets, 
3J.N~ are large (about 10 Hz for parallel l~-sheets, and 9 Hz for anti-parallel ones) 
and sequential NOEs largely differ from those noted in helices (Figure 13.15). 

It must  be recalled, however, that  NOE is directly dependent upon the ratio 
of the dipolar interaction vs. all other relaxation processes. So, caution is 
necessary as to a direct interpretation of the experimental  results if these other 

2We will not detail the particular case of proline, where the cyclic structure imposes a bent 
direction to the main chain. 
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Table 13.5 (a) Interproton distances (A) in regular motifs' a-helix (H)and 
~-sheets (S); (b)interstrand distances in ~-sheets. 

(a) d~ d~ d,,, .... 2, D~,.,§ d~,.,.~, d~,,.,..41 

H 3.5 2.8 
S 2.2 4.3 

4.2 3.4 2.5-4.4 4.2 
No NeE between fragments i, i+2 or more 
~N 3.2-4.7 

(b) d~,.,~ d~N,,~ dNNli.11 
2.3 3.2 3.3 

~-p 4.8 3.0 4.0 

mechanisms  are important .  For instance, in ~-sheets the most  reliable data 
concern CH~ and NH~. 

Indirect clues may also be used: so, H~ shifts depend upon the environment,  
and particularly on anisotropic effects from carbonyls or phenyl rings. Displace- 
ments  from the values quoted for random structures thus give some indices 
about the secondary structure. A difference greater than 0.4 ppm is an indicator 
of ~-sheets; an a-helix is probable if the difference is a b o u t - 0 . 4  ppm [21]. 

Among other helpful data, amide exchange rates can give some insight to 
the secondary structure thanks to information about the formation of 
hydrogen-bonding between backbone amide protons and carbonyl oxygen. In 
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Figure 13.15 Characteristic atom-atom distances involved for NOE in an R-helix and 
~-sheet. For the sake of clarity, only one example is shown for each NOE type (adapted 
from Wiithrich [19]). (a){x-helix: sequential NOE: (A)d~ = 3.5 A; (B)dNN = 2.8 A; longer 
range NOE (C) dN,,,,i.z~ = 4.2 A; (D) d~{,,i.~ = 3.4 A; (E) d~,,.3, = 2.5-4.4 A; (F) d~N~ .... 4~ = 4.2 A; 
(b) antiparallel ~-sheet. Sequential NOE (A) d~ = 2.2 A;' (B) dNN = 4.3 A. Interstrand NOE 
(C) d~,,, I = 2.3 A; (D)d~Nl~,,~ = 3.2 A; (E)dNN,,,I = 3.3A. 

a-helices, hydrogen bonds appear between CO,~ and NH~,+4~. In ~-sheets, they 
form a dense network.  In D~O solutions, labile amide protons exchange 
rapidly and the corresponding 'H signal disappears. However, the rate of decay 
is slow for protons involved in H-bonds or buried in the internal  part of the 
molecule. 

13.3.3 3D and 4D NMR 

For larger systems, determining the three dimensional  s tructure becomes a 
formidable challenge, owing to chemical  shift degeneracy, peak overlap and 
increased l inewidths.  The new techniques of heteronuclear  3D and 4D NMR, 
carried out on uniformly labelled (> 95 %)lSN and/or 13C substrates, provide an 
attractive solution for proteins in the 15-30 kDa range. The basic principles of 
this approach have been briefly summar ized  in Chapter  4. Suffice it here to 
recall that  as a 2D experiment,  the aim is to identify NOE connectivit ies 
between adjacent residues involving NH, C~H and C~H protons. However, in a 
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3D experiment, resolution is improved by increasing the dimensionality of the 
spectrum, since the proton/proton cross-peaks are now separated into different 
planes according to the shifts of bonded heteronuclei (~3C or ~SN). This leads to 
a massive simplification of the analysis. 

13.4 COMPUTER BUILDING 

In complement to experimental access to geometrical characteristics, 
computer-aided modelling plays an important role in structure determination 
of proteins. It intervenes in fact at several levels. 

As already pointed out, the three-dimensional structure from X-ray 
crystallography is now available only for a few proteins, for which results are 
collected in the Brookhaven Database (PDB) see Chapter 4. In some other 
cases, experimental data (from NMR, for example)are available, but not 
sufficient, if considered alone, to completely define the structure: they can 
only be viewed as constraints regarding the spatial location of some atoms. 
Computer modelling is therefore very useful to generate structures consistent 
with these constraints. A similar help can be also sought when an X-ray 
structure is difficult to solve. 

At a more ambitious level, when experimental determination of the 
geometry is not possible {for example, when good crystals are not easily 
obtained}, a computer-based structure prediction would be very valuable for 
understanding for example structure-activity relationships. Modelling will be 
also of important help in future to define guidelines for rational engineering 
and building of novel proteins with specific functions. However, at the present 
time, we are still far from an ex nihilo generation of a possible 3D structure. 
Work has generally to be carried out by comparison with similar systems, and 
the introduction of limited structural changes. 

A particular emphasis will be put here on two major aspects: 

�9 The prediction of the 3D structure (secondary or ter t iary)from the 
sequence of the amino acids, an important point since sequence- 
assignment is much faster than 3D structure determination, and the gap 
between known sequences and known structures is widening owing to the 
development of rapid sequencing techniques [31 ]. 

�9 The detection and quantification of structural similarity or homology at 
the 3D- or the sequence-level. 

It is now quite clear that the sequence of the amino acids constituting a 
protein is of enormous importance for both its 3D structure and functional 
properties. However, up to now, the relationships between these different 
facets of protein behaviour still remain unknown. They would of course be of 
paramount importance since for many systems the residue sequence is known 
well before the 3D structure is solved. Such knowledge would also give 
powerful clues for designing, in the near future, proteins dedicated to selected 
applications. 
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Indeed, the function of a protein may be dramatically sensitive to the 
constitution of its sequence. Pincus and Scheraga [40] quoted that changing a 
single amino acid at position 12 of a P21 protein (molecular weight 21,000) 
suffices to cause the protein to become oncogenic (i.e., to induce malignant 
transformation of normal cells)(Figure 13.16). 

From another point of view, prediction of protein structures can be 
considered as relying on two main approaches (in fact complementary and 
which can be used in conjunction with each other): 

1. Energy-based calculations through theoretical models and energy 
minimization, or 

2. Knowledge-based models combining sequence data to other information 
such as the known structure of a homologous protein. 

Energy-based structure prediction mainly relies on energy minimization 
and molecular mechanics or dynamics. Nevertheless, it still often remains 
reduced to limited optimization of strain induced by changes in side chains or 
small insertions or deletions. These methods are less successful for loop 
regions or when large changes take place. Up to now, they seem more useful for 
refining a structure than for predicting it. Their successes depend, of course, on 
the quality of the potential functions used. Nevertheless, basically, these 
methods are faced with the problem of a large number of possible multiple 
minima, making the traversal of the conformational space difficult, and the 
detection of the real energy minimum uncertain. These difficulties are 

20 
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~ 0 , ,  p - 0 x _ _ _  . . . .  

~( ~176 

Figure 13.16 Mutation of glycine 12 modifies the postulated mode of binding of a 
nucleotide on the P21 protein {from Hol with permission [41]). 
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however somewhat relieved by the alternative approach based on distance 
geometry. In fact, systematic conformational search for a protein of about 100 
residues as it is constitutes a huge problem. Looking only at angles • and ~, 
and even assuming that for most residues, there are roughly only three regions 
allowed in the (~, ~) conformational map, one would have to examine about 
31°° (i.e., 1048) different conformations [2] p. 299. 

13.4.1 Refinement of a structure under constraints 

Once the main structural patterns of the 3D structure have been 
experimentally determined, for example from NMR data, the next step deals 
with the elaboration of a 3D representation, using the techniques of computer 
modelling. Generally, starting with standard bond lengths and angles, one 
proposes a model consistent with the data (constraints derived from NOE 
measurements, torsion angles, selective non-bonded atom-atom distances, 
etc.) and refines it by energy minimization programs. Among the first 
solutions proposed, the CONFOR package [17, 32] starting from NMR data, 
visualizes violations of the geometrical constraints and allows for interactively 
relieving them by modification of torsion angles. This interactive construction 
was, however, limited to small motifs. Another pioneering package [17, 33], 
was limited to a size of about 10 residues and mainly applied to lipid-bound 
polypeptide hormones. 

An extreme example corresponds to situations where the starting backbone 
geometry of the desired protein is constrained to reproduce closely the X-ray 
structure of a homologous protein before side chains are introduced, as 
illustrated in a study of angiogenin (a 123 residue protein) based on its 
homology to bovine pancreatic ribonuclease of known structure. A 
preliminary step generated a standard geometry structure of ribonuclease 
consistent with X-ray data. Small L-peptide segments of about 30 residues 
were first energy-minimized along dihedral angles and then juxtaposed, with 
10 residues overlapping, for an initial fitting of the X-ray structure of RNase. 
Then the backbone of angiogenin was built from that of RNase, taking into 
account residue deletions and minimizing energy (including a penalty term to 
constrain the fit of the two chains). Finally, side chains and backbone dihedral 
angles were refined [50-52]. 

13.4.2 Energy-based structure prediction 

In earlier attempts, a global reconstruction of the tertiary structure was 
approached by Scheraga et  al. using chosen atomic distances, and considering 
only two or three degrees of internal freedom (backbone dihedral angles) for 
each residue, owing to computational requirements [40]. 

An empirical force field program (ECEPP: Empirical Conformational Energy 
for Polypeptides and Proteins)[42, 43] is first used to determine the energy 
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minima for the naturally occurring amino acids considered individually 
(single energy minima). The process is then progressively and systematically 
extended to the preferred conformations of oligopeptides (di- to hexa-)and 
polysaccharides. Starting from the first two residues of the sequence, all 
possible single residue minima are combined and subject to energy 
minimization. Dipeptide conformations whose energy lies within a given cut- 
off energy value above the lowest minimum are retained and combined with 
all the single residue minima of the next amino acid, and the process is 
repeated [44, 45]. The procedure was applied, for instance, to gramicidin 
(acyclic decapeptide with symmetry)and a model of collagen poly(Gly-Pro- 
Pro) [40]. 

Nevertheless, for an extension to larger systems without symmetry or 
perfectly repeating units it is necessary to limit the number of low energy 
conformations to be combined. This can be achieved thanks to the concept of 
non-degenerate minima corresponding to different backbone conformations 
(eliminating redundant local minima with the same backbone geometry but 
differing by the orientation of their side-chains)[46, 47]. This method was 
applied to a number of membrane polypeptides and proteins with a particular 
interest devoted to leader sequences (sequences of about 20 non-polar residues 
on their amino terminal) that cause translocation of the protein chain across 
membranes and are supposed to act as Chain Folding Initiation Sites (CFIS) 
[46]. It was also used to determine the preferred structures of the 
transformation region of the P21 protein to obtain some information about the 
structural basis of oncogenesis [48]. 

This progressive building-up procedure stresses the general principle that 
protein shape and folding can be successfully approached using successive 
approximations: at a first level, short range interactions limit the 
conformations possible for residues in the final structure. Medium range 
interactions (such as those occurring between residues four positions apart in 
helices) select subsets of these possible conformations. Finally, long range 
interactions (packing of non-polar residues, side chains interactions, etc.) must 
be introduced to enable the molecule to achieve its overall shape; the whole 
structure then being subjected to an energy minimization. 

Alternatively, simulated annealing methods have been proposed to locate 
the global minimum energy conformations, and were proved to work 
successfully for the "dipeptide models" of the 20 natural amino acids as well 
as for polyalanines (up to Alas0)[49]. 

For larger systems, limiting the conformational space to be traversed and 
reducing computer time involved in the building-up process can be efficiently 
achieved by introducing constraints (for example distance constraints from 
NOE data)in a penalty term. 

13.4.3 Including knowledge from solved structures 

Energy-based methods can be efficiently improved by the addition of some 
amount of knowledge extracted from proteins of known structure [53]. 
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Reconstruction of the tertiary structure of flavodoxin from only the 
crystallographic coordinates of its a-carbons constitutes an illuminating 
example to check the accuracy of such an approach. This protein of moderate 
size (138 residues)whose structure is known can be considered as a typical test 
case since it contains a mixture of helix, sheet, turn and coil conformations. 
Main chain atoms were here generated from a dictionary of backbone 
structures for polyalanine short segments (4-7 residues). Then side chains 
were initially set according to statistical distribution criteria (deduced from an 
analysis of side chain torsional angles as a function of secondary structure). To 
solve clashes, a base of 190,000 pairwise side chain interactions was built. 
Finally, energy minimization was carried out. The deviation with respect to 
the native structure is quite satisfactory (RMSD 1.7 A across all atoms)but, as 
the authors noted, about 40% only of the X, torsional angles (for side chains) 
are predicted correctly. 

Generally speaking, the accuracy of such a methodology is often difficult to 
assess. In the preceding study, special attention was paid to the search for 
various parameters that can be used as a possible caveat from incorrect 
modelling. Surface areas, internal cavity volume, close contact distances, 
hydrogen-bonding patterns, energy, etc. were examined and their values 
compared to statistical averages observed in known structures. Although a 
discrepancy would indicate no more than a deviation with respect to "usual 
behaviour", using these indices can greatly assist the modelling process. 

13.4.4 Tertiary structure calculation through distance 
geometry 

Distance geometry was then proposed as a more general approach, requiring 
massive computation but able to cope with large systems [34]. The DISGEO 
program [15, 35-37] (working with up to 100 residues) enabled the first 
structure determination from NMR data for a globular protein (bull seminal 
proteinase inhibitor IIA (BUSI IIA), including 57 residues). 

It must  be recalled, however, that distance geometry, using experimental 
NMR constraints, works only on upper limits rather than specific distances 
[17], often representing only a (largely) incomplete set of distances. As a result, 
the trial structures generated from random distance selection generally lead to 
similar (but not exactly identical) solutions, and correspond rather to groups of 
neighbouring conformers. Although largely used for polypeptides and proteins, 
distance geometry was also extended to DNA structure determination by 
Tinoco et  al. [381. 

Distance geometry was also incorporated in tertiary structure prediction 
methodology (see below [39]). For more details about distance geometry 
methods, see Chapter 7. Note also that molecular dynamics (see Chapter 6) 
constitutes an alternative avenue for refining structures obtained by 
interactive modelling (and possibly the distance geometry approach). 

Kuntz et  al. [39] have extended the distance geometry method, relying on 
upper and lower limit matrices, to incorporate varied theoretical or 
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experimental constraints. The aim was to predict hairpin turns and specify a 
set of long-range contacts. As the method uses some "knowledge" (a turn 
predictor), it appears as intermediate between energy-based and knowledge- 
based approaches. For large protein systems, calculation cannot be carried out 
at the atomic level and for the sake of simplification, each amino acid is here 
represented just by a sphere centred on the s-carbon. The originality of the 
treatment is that besides mathematical or geometrical constraints (triangle 
inequality for distances, known angles or bond lengths, distance of closest 
approach for non-bonded atoms, etc.) other long range constraints may be 
introduced: disulphide bonds, proximity of specific residues, partial data from 
NMR or X-rays, and so on. 

The method then generates a partial contact/no-contact list. The first step 
proposes a residue pairing scheme on the basis of hydrophobic interactions 
(evaluated from hydrophobic pairing functions, a coefficient roughly 
proportional to the surface area of the side chain, and expressing the energy of 
hydrophobic bonding). In the second step, pairs "geometrically inconsistent" 
with other contacts are eliminated. For the purpose of generating a list of 
contacts, a turn predictor model relying on hydrophobic interactions was used 
(giving better results than the Chou-Fasman predictor of secondary structure 
(see below)). This "firehose" model assumes that the chain is made of linear 
fragments (featuring helices and extended strands) and turns and that all 
secondary structures except turns have the same spatial advance per residue. 
Possible interacting pairs are generated, eliminating residues which are too 
near or too far apart (very large loops). From weighted hydrophobic interactions 
calculated around each residue pair i,j (with 6 < j-i  < 25), hairpin turns 
permitting the maximum overlap of hydrophobic residues are predicted. 
According to the location of these turns, a screening algorithm determines 
pairs that can be reasonably in contact. 

After these manipulations of the boundary matrices comes the generation of 
3D structures meeting the imposed constraints, using for example 
optimization or Monte Carlo procedures [54, 54a]. In the example of the small 
protein pancreatic trypsin inhibitor, this methodology correctly locates the 
hairpin turns and predicts plausible long range hydrophobic contacts. It leads 
to a proposed backbone conformation with errors of 4-8 A compared to the 
native structure. 

13.5 KNOWLEDGE-BASED PREDICTION: MODEL BUILDING FROM 
HOMOLOGY 

Most of knowledge-based model building relies largely on the concepts of 
similarity and homology. As pointed out by Boswell and Lesk [55, 56] speaking 
of homologous sequences would strictly imply that they are derived from a 
common ancestor. However, in a broader sense (as we adopt here), 
"homologous" is often taken as being synonymous with "similar". 
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In knowledge-based modelling, a database of proteins for which structural 
and sequence information is available is used to predict structural features for 
proteins of neighbouring sequences. From proteins of known structures, a 
comparison of sequence and 3D geometry makes it possible to derive rules or 
parameters that will subsequently enable us to determine the probability for a 
given fragment to arrange into a particular regular structure. As for tertiary 
structures, they also allow to define sequence templates for families of protein 
structures that adopt a common fold. If a sequence of an unknown structure 
can be matched with a template, a model of the fold can be built by analogy, as 
in the COMPOSER program [57]. However, up to now, much more confidence 
can be placed on a comparison with homologous proteins rather than on a 
prediction from knowledge bases. 

The initial premise is that functionally analogous proteins with homologous 
seqeuences will have closely related structures with, in particular, common 
tertiary folding patterns [58]. As can be expected, when sequence homology 
with a known protein is high, modelling of an unknown structure by 
comparison can be carried out with reasonable faith [59]. However, (although 
this is of no use in modelling by homology where sequence similarity is a 
prerequisite [60, 61]) it can be noted that structural homology may remain 
significant even if sequence homology is low (as for example in cytochrome c3, 
or globins where eleven proteins with very different amino acid sequences 
exhibit remarkably similar secondary and tertiary structures} [62]. In other 
words, 3D structure seems better conserved than the residue sequence. From a 
comparison of 32 pairs of homologous proteins [59], it was established that 
pairs with a sequence homology > 50% have 90% or more of the residues 
within a structurally conserved common core (with the same fold). When 
similarity drops to about 20%, the common core contains between 42% and 
98% of the residues of the individual proteins. 

Schematically, for predicting structures of unknown proteins, model 
building proceeds through three main alternate approaches [58]: 

1. Starting from the sequence knowledge. 
2. Assembling fragments from different, known homologous structures. 
3. Carrying out limited structural changes from a known neighbouring 

protein. 

13.5.1 Prediction of secondary or tertiary structures from the 
sequence 

These approaches, which have prompted considerable work, have so far shown 
only limited reliability (less than 70% accuracy). Prediction from sequence 
works better at the secondary structure level or within a class of proteins, but 
for tertiary structure or for molecules outside the class, reliability is often poor 
[63], although over the years, these approaches have gained slow but 
continuous improvements. We will only present here the most classical 
approaches. For recent refinements (although they do not seem to drastically 
modify the situation, see Lesk [56] and Garnier et  al. [64]. 
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Generally speaking, these methods were first tackled at the secondary 
structure level, applying simple physicochemical constraints to short chains of 
amino acids [65-67a]. Two aspects were considered: the propensity of 
individual residues to adopt a conformation favouring a given arrangement, 
and the influence of neighbouring residues. Generally, hydrophobic patterns 
over several neighbouring residues play an outstanding role in these 
evaluations. The principle of these methods can be traced back to the 
observation of Wu and Kabat [68], that in three-peptide fragments XYZ, the 
conformation of a specific residue Y is largely determined by local interactions 
with X and Z, and so is likely to be similar to that observed in fragment XYZ 
of another protein. Various methods have been proposed, relying on 
information theory, statistics, artificial intelligence or neural networks. 

As indicated by Garnier et al. [64] prediction of the secondary structure can 
be of some help for the alignment of homologous proteins, and can guide the 
choice for mutation of an amino acid with respect to the conservation of the 
structure. 

I n f o r m a t i o n  t h e o r y  a n d  s t r u c t u r e  p r e d i c t i o n  

The method proposed by Gamier et al. [69] basically aims to evaluate the 
information that residues R,, R~, R3... in the sequence carry on the 
conformational state Si (say S, = H helix..., sheet...) of any given residue j: 

I (S, = H,t~,R~, ...... Rl,s, ) 

This is expressed, in a simple form, by the summation of separate terms 
characterizing the information on residue j (under investigation) carried by its 
neighbours, i.e. residues separated by no more than eight positions in the 
sequence: 

m=+8 

m=-8  

The model proposes a four state prediction (Helix, Extended chain, reverse 
Turn, Coil). For the 20 natural amino acids, and 17 positions (from j-8 to j+8), 
a table of 20xl 7x4 parameters is needed. Their values were obtained from a 
statistical analysis of 25 proteins of known sequence and structure. For each 
residue, the information is calculated for each of its four conformational 
states, and corrected from a subtractive decision constant (that is specific to 
the state (H,E,T,C) and empirically adjusted to get better predictions). The 
conformation with the highest information content is elected. An overall 
accuracy of about 63% is attained (for a four state prediction, where random 
probability would be 25%). This seems a quite general limit for several 
methods of secondary structure prediction, since long range interactions are 
omitted. However, prediction can be improved by using supplementary 
information, for example classifying proteins into m-helix-rich proteins, ~- 
pleated sheet-rich proteins and other proteins, classes for which long range 
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interactions differ. Circular dichroism, which gives some indications about the 
content of helices or ~-sheets, can be used for that purpose. 

In the absence of any evaluation of long range interactions, well defined 
subassemblies of local secondary structures (which dominate the tertiary folds 
of many globular proteins) reflect intermediate range contacts between 
sequentially adjacent units of a secondary structure, and can help in solving 
the secondary structure [70]. The method (based on recognition of 
supersecondary structures)was exemplified on a ~o~-unit prediction, leading 
to an improvement of about 7.5% over the original prediction. The point was 
to find the best positions along the sequence for a scaled ideal ~cx~ template 
derived from frequency histograms of secondary structure occurrence. This 
was carried out by adding to the probability calculated for helices, extended or 
coil forms (according to the Gamier or Chou methods) additional information 
on the distribution of hydrophobic residues specifically required for ~o~ units. 
Then the secondary structure prediction was refined (Figure 13.17). 

Statistical approach 
The model of Chou and Fasman {65-67a] relies on the observation, derived 
from a wide number of crystal structures of proteins, that some amino acids 
are more likely than others to be found in a type of secondary motif, for 
example an or-helix. From the frequency of occurrence of each of the 20 amino 
acids in regular arrangements {~t-helix, ~-sheet, ~-turn)observed in the crystal 
structures of 29 proteins, the authors have calculated the probability [called a 
structural or conformational parameter} of finding a given amino acid in a 
helix, a sheet, etc. (see Table 13.6}. 

To predict the secondary structure, a mean value of these structural 
parameters is evaluated for four residues all along the protein. Four residues 
among six with Pet > 1.06 can initialize a helix and for the residues involved, 
<Ptx> must  be greater than 1.03. The helix stops if <Pc~> < 1.0 for four residues. 
Three residues among five with P~ > 1.05 may initialize a ~-sheet. The sheet 
stops if <PJ3> < 1.0 for four residues. If a sheet is predicted, <P~> must be greater 
than <Ptx> (and the reverse for the prediction of a helix). Similarly, 13-turn 
prediction can be carried out from the structural parameter of residue i and the 

P ~ P  
units 

Adjacent s t rands Non - ad jacen t  

Temptate 

p Coil cc c oit p 
IdeaL 5 5 12 5 5 

Figure 13.17 Idealized templates for ~R~ units (from Taylor and Thornton with 
permission [70]). 
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Table 13.6 Conformational parameters of Chou-Fassman-Prevelige [65, 65a]. 

Amino a-helix ~-sheet ~-turn ~-turn 

acids Pc~ P~ Pt f, f,., f,.2 f,.3 

A 1.42 H 0.83 i 0.660 0.060 0.076 0.035 0.058 
C 0.70 i 1.19 h 1.190 0.149 0.053 0.117 0.128 
D 1.011 0.54 B 1.460 0.147 0.110 0.179 0.081 
E 1.51 H 0.37 B 0.740 0.056 0.060 0.077 0.064 
F 1.13 h 1.38 h 0.600 0.059 0.041 0.065 0.065 
G 0.57 B 0.75 b 1.560 0.102 0.085 0.190 0.152 
H 1.00 1 0.87 i 0.950 0.140 0.047 0.093 0.054 
I 1.08 h 1.60 H 0.470 0.043 0.034 0.013 0.056 
K 1.16 h 0.74 b 1.010 0.055 0.115 0.072 0.095 
L 1.21 H 1.30 h 0.590 0.061 0.025 0.036 0.070 
M 1.45 H 1.05 h 0.600 0.068 0.082 0.014 0.055 
N 0.67 b 0.89 i 1.560 0.161 0.083 0.191 0.091 
P 0.57 B 0.55 B 1.520 0.102 0.301 0.034 0.068 
Q 1.11 h 1.10 h 0.980 0.074 0.098 0.037 0.098 
R 0.98 i 0.93 i 0.950 0.070 0.106 0.099 0.085 
S 0.77 i 0.75 b 1.430 0.120 0.139 0.125 0.106 
T 0.83 i 1.19 h 0.960 0.086 0.108 0.065 0.079 
V 1.06 h 1.70 H 0.500 0.062 0.048 0.028 0.053 
W 1.08 h 1.37 h 0.960 0.077 0.013 0.064 0.167 
Y 0.69 b 1.47 H 1.140 0.082 0.065 0.114 0.125 

H, h, I = strong, medium or weak former character for helices or sheets, i = indifferent, 
B, b = breaker character (strong, weak). 
P values are derived from fractional occurrences. For example, for an a-helix, the ratio 
f~ = ndn of the occurrences of a given residue within helices versus the total 
occurrence of this residue in the learning set gives the fractional occurrence of the 
residue in the helices. P = fJ<f~>, where <f~>, the average value of f~, is simply the sum 
of f~ values divided by 20, the number of different residues. 
P = 1 means that the residue adopts that conformation at the same frequency on the 
"average" residue. 

f rac t ional  occur rences  of res idues  i, i + l , / + 2 ,  i+3. G iven  a m i n o  acid i, and <pt> 
- f, * f,.~ * f,+2 * f,.3 a t u r n  is l ike ly  to s tar t  in pos i t i on  i if <pt> > 0.75 �9 10 -4, <Pt> 
> 1.0 and <Pt> > <Pot> and <P~>. 

O t h e r  mode l s  i n t roduced  rules  developed  f rom an a priori  s t e r e o c h e m i c a l  
t heo ry  of the  secondary  s t ruc tu re  of g lobular  prote ins .  The  p red ic t ion  is based  
on the  hyd rophob i c  charac te r  and size of a m i n o  acids w i t h i n  shor t  f r agmen t s  
( typical ly five residues)" for example ,  large h y d r o p h o b i c s  at i, i+1, i+4 or i, i+3, 
i+4 are good clues for a he l ix  [63]. 

Neural networks and structure prediction 

In var ious  c h e m i c a l  research  areas, neura l  n e t w o r k s  have  s h o w n  the i r  ab i l i ty  
to acquire  c o m p l e x  m a p p i n g  b e t w e e n  i npu t  and o u t p u t  data  sets, and  to 
es tab l i sh  re la t ionsh ips  even before the  unde r ly ing  m e c h a n i s m s  are 
unders tood .  N e u r a l  n e t w o r k s  are c o n n e c t e d  s t ruc tu re s  of s u m m i n g  nodes  in 
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which each node is linked to other nodes via weighted connections. Allowing 
the strength of the connections to change under the control of a learning 
algorithm makes such networks able to self-organize in a supervised learning 
environment. (For a discussion of supervised and unsupervised learning from 
neural networks, see Zupan and Gasteiger [71 ].) 

Various network architectures have been proposed to address the problem of 
predicting protein secondary and tertiary structures from sequence alone, or 
classifying sequences into structurally and functionally defined families 
[71-76]. Neural networks have also been used for the analysis of nucleic acid 
sequences [77]. Although the various approaches use different types of 
network, an important set of studies devoted to the prediction of the secondary 
structure, focuses on a feed-forward, layered organization. The learning step is 
carried out thanks to the algorithm of back propagation of errors in the 
learning stage: that is, information propagates forward (from input to output) 
while error correction is performed backwards (from output to input){Figure 
13.18). 

Nodes in a layer only communicate with immediately adjacent layers, 
according to connections provided with suitable weights w,. At each node i, 
the weighted sum of all outputs O, from the nodes j of the preceding layer 
connected to i (possibly with a bias B,) gives the activation A,. The output from 
node i is then calculated applying to A, a squashing function, frequently the 
sigmoidal function: 

O, = l / ( l + e  -^') 

(a) 

Input 

~ t  Hidder t ~ er 
put 

O! 

(c) 

A,=~W,,O,+B, O,=l/(l+e -A,) 

I 

---. 000~~~ A, 

Figure 13.18 (a) Three-layer and (b) Hopefield-type networks; (c)neuron computation 
and sigmoidal squashing function. A, = activation of unit i {bias Bi); Oi = output of 
unit i. 
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This output is then transmitted to the nodes of the next layer connected to 
node i. The input layer receives structural information from the environment 
of the position considered and sends it to the next layer. Results are read from 
the output layer. One or more hidden layers can be placed between the input 
and output layers. 

In applications to proteins, inputs are typically characteristic of the sequence 
and outputs are secondary-structure features or distances between ~-carbons. 
In the learning stage, a set of known input/output pairs are fed to the network 
iteratively, and the system adjusts the weights of the connections and the biases 
so as to retrieve the correct values at output. This is done by back propagation 
of errors: starting from the differences between observed and calculated values, 
weights are modified from the output layer toward the preceding layer, and so 
on. The system is now trained and ready to deal with new compounds. As to 
inputs, in the studies quoted, the nature of the amino acids is described within 
a window centred on the current residue (that under scrutiny) and progressively 
moved along the sequence. For each amino acid of the window, its nature is 
specified by binary encoding within a 20- or 21-bit group of inputs (one for each 
possible amino acid and one spacer to cope with windows overlapping the end 
points of the protein sequence). Within each group of 21 inputs, the input 
corresponding to the amino acid present is set to 1 and the others to zero. The 
window width was chosen as 13 amino acids (six neighbours before and after 
the one investigated)[72, 74], or 17 [75], leading to a high number of input 
neurons (say 13 x 21 = 273). In [72], the output is constituted by three neurons 
for the three possible states considered (~-helix, ~-sheet, coil), but variants have 
been investigated: two outputs (helix and sheet)for Holley and Karplus [75], 
whereas Bohr et al. [73] used separate networks for the decisions on helix, sheet 
or coil. Various topologies (as to the number of hidden units)were also tried, 
but the number of hidden units does not seem to significantly modify the results. 
The predictive accuracy is about 63 %, and so comparable to other approaches. 
However, subdividing proteins into structural classes (~, 13, ~/~) or adding 
supplementary information (hydrophobicity) significantly improves the results. 

Beyond the recognition of secondary structure patterns, neural networks 
were also used to predict the tertiary structure. Bohr et  al. [76] still used a feed- 
forward network, but extended the input window to 61 residues. Outputs 
specify the secondary structure assignment (helix, sheet, coil) and tertiary 
structure information that is treated in a binary coding of the C~ distances (0 if 
the distance between the two residues in question is less than an 8 A threshold 
value, 1 otherwise). Thirty (binary) distance constraints for each C~ are so 
provided as a starting point for an energy minimization process (with a 
steepest descent approach) to generate a folded conformation of the protein 
backbone (Figure 13.19). 

The approach of Wilcox et al. [78] is similar, but the network is trained to 
reproduce a real distance matrix (output), consistent with the data extracted 
from the Brookhaven Database. Indeed, a distance matrix can be used for 
classification and preserves sufficient information for predicting the 3D 
structure. Sequences given as inputs are now encoded by Leibman 
hydrophobicity parameters (scaled to +1/-1)[79], rather than by their nature, as 
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\....\ Movable window: 

'rK2 [ ~3 r-30 rA3 +I I r r+30 
QDIL I L H. . .L A 

Hidden layer 

Ii I " I-I l .... 

OUTPUT" 

distances 

r -30  
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Q S H A E A .  

d .  s t r u c t .  
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Figure 13.19 Schematic representation of the three layer feed-forward network used 
by Bohr et  al. [76] for predicting 3D protein structure. The input is constituted by a 
movable window of 61 residues centred on the residue under scrutiny (r in the scheme). 
Each residue is identified by binary coding in a 20 letter descriptor (one per amino acid). 
For example, in this scheme, residue r-3 is alanine. Outputs indicate the secondary 
structure (here r belongs to an {x helix), and distances between r and its preceding 
neighbours; residues r-30, r-3 are further apart from r than the threshold distance (8 A). 
Typically, the network comprises 20 x 61 input units, 300 hidden units and 30 + 3 units 
as output. Each unit is connected to all units of the preceding and following layers. 
Only some connections are shown here for the sake of clarity. 

in the previous applications. The network used in their study comprises an 
input layer of 140 units, and one or two hidden layers can be managed (up to 
240 nodes for the one layer model, 2 x 140 hidden nodes when two hidden 
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layers are considered). A possibility of direct connection between input and 
output was also provided. The output is formed by a normalized (+1/-1) 
distance matrix (140 x 140) for ~-carbons. Such an organization corresponds to 
about ten million connections executing up to five million updates per second, 
which were carried out on a Cray supercomputer. 

The training set was formed of 15 heterologous proteins of less than 133 
residues each, inputs being determined by means of a movable window of 
10-20 residues along the sequence. As to the possible prediction of a simple 
helix or strand for novel sequences, a reliability for the prediction of about 65 % 
is achieved. This is only roughly similar to the results of Chou et  al. [65-67a], 
although given data are learned to 98% recall fidelity, with an output distance 
matrix within 0.3-1.5 % RMS deviation. According to the authors, the training 
set obviously seems too small for useful generalization (although encouraging 
results are obtained for pairs of homologous structures, confirming that a 
trained network is able to predict structure within a homologous family). 
Increasing the size of the training window and the complexity of the 
description, it is hoped, should lead to better results. 

Interesting remarks about the way in which neural simulators work also 
emerge from that study. Networks with direct input-output connections learn 
faster but perform as simple associative memory, demonstrating little 
generalizing ability. Hidden layers forcing the formation of global associations 
are more able to generalize. 

Prediction of folding has recently been tackled [801 with another network 
structure: a Boltzmann machine. Rather than taking into account the identity 
of some fragments with learned sequences, the system minimizes a 
parameterized energy function. The Boltzmann machine (already presented in 
Chapter 11) is a feedback, completely connected network with a binary 
threshold and symmetric connections. Each state of the system has an energy 
that is a function of the state of the units (the nodes) and connections. The 
probability of a state is related to its energy by Boltzmann's probability law. In 
classical use, learning adjusts the connections so that the probability 
distributions of the values of the units are as close as possible to some desired 
probability distribution. Here the system has to adjust free parameters 
(thought of as representing physical quantities such as hydrophobicity) rather 
than adjusting connections. Learning is carried out by adjusting the probability 
of finding each amino acid residue in a given conformation. Configuration is 
simply encoded by indicating whether the C~ carbon considered is in an ~- 
helix. The system learns the probability of the configuration of segments (or 
the whole) of the protein. To fit this probability distribution with that which it 
calculates during the learning stage, the system adjusts the energy parameters 
involved in the energy function. This energy function is calculated according 
to the helix propensity parameter of the individual amino acids (free energy of 
the helix state for each amino acid). It involves consideration of residues i, i+1 
and i+2 (that must be in an ~-helix configuration to allow for the formation of 
a hydrogen-bond network between the carbonyl of residue i-1 and NH group of 
residue i+3 [2]. Another energy parameter also intervenes in representing the 
H-bond energy between residues (situations where amino acids i and i+3 are 
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both hydrophobic, hydrophilic, or one of each type being distinguished). The 
results obtained on a training set of 110 protein chains (mean dimension = 165 
residues) compare well with other approaches. 

The framework proposed by Friedrichs and Wolynes [81] to tackle the 
problem of protein folding relies on associative memory. The formalism is 
similar to that used in spin associative memories, where interactions are given 
by the spin correlation function over the memory set. Here the Hamiltonian 
expressing the interaction potential between residues is evaluated by a "charge 
density" correlation function, comparing "charges" (in fact a binary encoding 
of hydrophobicity) over the database. According to the authors, the system has 
a large capacity for recall, and seems able to recognize tertiary structures for 
moderately variant sequences. 

Art i f ic ia l  in te l l igence  t e chn ique  

Knowledge engineering was also recently introduced by Clark et al. [82] for 
protein sequence analysis and structure prediction. Identification of analogies 
in secondary structure, domains or interactions with ligands was at the centre 
of numerous studies, with the common aim of deriving rules for structure 
prediction. For example, Blundell et al. [83] proposed extracting loop 
conformation from a database. In attempts towards automated procedures [84, 
84a], rules were proposed for the conformation of side chains when replacing 
residues in homologous proteins. 

Common processes and decisions involved in the analysis of a sequence for 
structural prediction are summarized in Taylor's flowchart of "possible paths 
to follow in the prediction of structure" [85]. This flowchart represents one 
possible strategy, but it may be argued that it imposes a defined order in 
process execution (although many operations involved could be used at 
diverse stages), and possible extensions cannot be easily incorporated (Figure 
13.20). 

However, in a parallel approach, it was established that the processes used in 
these flowcharts can be expressed as a set of rules [86], making it possible to 
include them in a knowledge-based system. Such systems now offer 
opportunities to incorporate rules, facts and hypotheses in a new logical 
approach. One of their main characteristics is the clear separation and explicit 
representation of descriptive knowledge (facts, hypotheses) and strategic 
knowledge (how to use the descriptive knowledge to solve problems)combined 
by logic inference [8 7]. In fact, very often, most of the rules used in knowledge- 
based systems, and generally expressed in the simple formalism 

"IF CONDITION ... IS FULFILLED, THEN ACTION ... RESULTS" 

could be incorporated into traditional procedural programming (written in 
common languages such as Fortran). However, the declarative structure of 
knowledge-based systems offers important advantages as compared to 
traditional programming: 
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�9 modularity to permit extension, 
�9 flexibility (opportunity to integrate diverse knowledge from various 

sources of information, and coherently represent it with the same 
framework.., easy addition of new knowledge as more problems are 
solved), 

�9 consistency and truth maintenance of facts and hypotheses, 
�9 robustness and capability to accommodate conflicts, 
�9 ability for reasoning about high level relationships, etc. 

These qualities are offered in the proposed system, which is based on a 
network architecture (according to the blackboard model in expert systems) 
where nodes represent entities and links represent processes. The prototype 
system presented consists of 29 nodes and over 100 links. Knowledge 
comprises sequence homology, biologically significant residues, results of 
biochemical or biophysical assays (proteolytic cleavage, NMR data). Entities 
(storing knowledge)comprise structural description, identifiers, results of 
assays or of database queries. Links represent relationships between entities. 
These relationships can be constraints (consistency requirements between 
entities), and minimal preconditions associated with processes relating 
entities (for example, similar sequences are a precondition for alignment, but 
not sufficient alone, since additional preconditions are necessary). When the 
required conditions are met, it is possible to execute the process linking the 
two entities. 

Besides secondary structure prediction, tertiary structure can be attained, 
thanks to Cohen's combinatorial algorithm using disulphide linkage and 
structural class folding rules. However, the authors indicate that prediction 
still suffers from non-standardization of some of the knowledge, and a lack of 
a coherent functional classification of non-enzyme proteins [88]. 

13.5.2 Combining structural elements from homologous 
proteins 

Proteins have been classified into families based upon sequence homology; 
globins, cytochromes and serine proteases are some of these. Within a family, 
homologous amino acid sequences have virtually identical folding patterns. 
Such similarities in the 3D organization suggest that the structure of an 
unknown protein can be attained from known members of the family by 
comparative model building [60, 61, 61a, 89]. In fact, structure, presumably 
determined by the requirement to preserve the functionally correct fold, has 
evolved more slowly and is better conserved than the sequence. 

The example of serine proteases (the structures of which are known) can be 
used to present the methodology of Greer [61, 61a]. The basic observation is 
that known serine proteases have Structurally Conserved Regions (SCRs)(with 
high sequence homology) and Structurally Variable Regions (SVRs)(including 
additions and deletions), usually corresponding to external loops. For regions 
of high sequence homology, construction of the SCR is straightforward, 
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whereas building SVRs remains a more challenging task. Greer proposes to 
model SVRs from parts selected from several different known structures. For 
example, when modelling chymotrypsin from trypsin and elastase, trypsin is a 
good model for the 97-101 loop and elastase for the 203-206 loop (Figure 
13.21). In other words, the method "capitalizes upon the availability" of 
several experimentally known homologous proteins. 

However, linking together fragments extracted from different proteins 
remains somewhat hazardous, since this approach is unaware of environ- 
mental effects. The active site of a protein is generally composed of residues 
from different strands. It therefore seems difficult to mimic this structural 
organization by simply assembling fragments from various sources. 

In a recent approach, Haneef et al. [90] proposed building the framework 
from an average (regularized) structure that retains important interactions and 
is derived from several known structures. Then a distance geometry method is 
used (formation of a metric matrix, extraction of its three largest eigenvalues) 
before an optimization to relieve distance constraints. The method is 
applicable to both proteins and nucleic acids. 

13.5.3 Modelling by modification of a known homologous 
protein 

The most promising methodology to date relies on modifications of a closely 
related, functionally analogous, known homologous molecule. This is the 
basis of homology modelling for deriving a putative 3D structure: from a 
known 3D structure, residues are changed in the sequence with minimal 
disturbance to the geometry. Then an energy minimization process optimizes 
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Figure 13.21 Sequences of chymotrypsin (CHT), trypsin (TRP) and elastase (ELA) 
aligned by comparison of their 3D structures {partial view). The structurally conserved 
regions are shown in boxes. Lower case letters correspond to buried residues (low 
solvent accessibility of the side chain). When modelling chymotrypsin, trypsin is a good 
model for the 97-101 loop and elastase for the 203-206 loop {from Greer with 
permission [61 ]). 
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the mutated structure [58]. However, one must bear in mind an important 
caveat: major changes in the conformation of the external part cannot be 
predicted. 

One of the first attempts in that field, as quoted by Blundell et  al. [83], seems 
to be the construction of a model of (x-lactalbumin (Figure 13.22)from the X- 
ray structure of lysozyme [91]. This was achieved, at that time, on physical 
models, but the approach now using computerized images, with their extended 
capabilities, is similar. For example Kretsinger et  al. [92, 93] predicted the 
structure of the calcium-binding region of the protein troponin C, thanks to 
the known structure of another Ca-binding protein, parvalbumin. Subsequent 
determination of the crystal structure showed that the prediction was correct 
for the binding site and supersecondary structure (helix, loop, helix). Similarly, 
the structure of antigen-binding domains of an antibody (immunoglobulin 
D1.3) could be predicted by comparative analysis of known antibodies or 
conformational energy calculations [94]. 

Determining to what extent sequence homology can be useful for structure 
prediction of an unknown protein is a huge problem. On the one hand, Chothia 
and Lesk [60] investigated the influence of evolution on pairs of homologous 
(strictly speaking)proteins. From this study, it appears that the degree of 
success in predicting structure from the sequence by comparison to a known 
homologous structure is good when sequence homology is > 50%. However, if 
sequence homology is about 20%, large and unforeseeable structural 
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Figure 13.22 Modelling using multiple structures. Construction of tissue 
plasminogen activator (f)from 70 segments of other known proteins on the basis of 
sequence homology. The first steps are shown in (a)-(d), the last one in (e)-(f)(from 
Blundell et al. with permission [83]). 
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differences are to be expected. However, the structure of the active site itself 
may be not heavily changed. 

On the other hand, if some rules for side chain substitution have been 
derived and graphical visualization avoids crass errors (a buried, charged side 
chain that is not hydrogen bonded is almost certainly incorrect)[83], things are 
not always as simple as expected. Great care must be taken when carrying out 
side chain substitution. This was elegantly demonstrated by Karplus et al. [89]. 
Given two proteins of a similar overall shape, T h e m i s t e  d y s c r i t u m  
haemerythrin and mouse myeloma immunoglobulin (respectively, a l l - ~  o r -  
13), they constructed two patently incorrectly folded structures: haemerythrin 
side chains were substituted into the immunoglobulin, and vice versa. 
Surprisingly, energy minimization gives, for these incorrect structures, 
energies quite comparable to those of the correct proteins (Figure 13.23). In 
other words, avoiding bad non-bonded contacts, though necessary, is not 
sufficient to ascertain that the correct solution has been found. Other criteria 
must be looked for. So, it was shown that the incorrect structures have less 
stabilizing H-bonding, electrostatic and van der Waals interactions (differences 
are still more pronounced when the influence of the solvent on the latter two 
terms is evaluated). The incorrect structures also have a larger solvent- 
accessible surface, and a greater fraction of non-polar side chain atoms exposed 
to the solvent. 

13.5.4 Recent applications of homology modelling 

Among recent applications, Toma et al. [95] developed the construction of an 
atomic model of protease inhibitor regions in APPI (amyloid ~-protein 
precursor, intervening in Alzheimer's disease) based on the structure of bovine 
pancreatic trypsin inhibitor (BPTI). After the alignment of the two sequences, 
BPTI side chains were changed with best fitting amino acid residues and steric 
hindrance removed through energy minimization (AMBER force field) in a 58 
amino acid fragment (from residues 287 to 345). To complete the information 
gained from only the inhibitor model, enzymatic subsite models for serine 
proteases were also built. Site mapping then provides more insight into target 
enzyme specificity of the inhibitory activity. 

The same methodology (mutation of residues from a homologous structure 
and energy minimization)was used in building a model of the active site of 
cytochrome P-450 nifedipine oxidase (P-450NF) on the basis of sequence 
homology with cytochrome P-450c~, with the design of new selective 
inhibitors [96] in mind. Cytochrome P-450 is a largely widespread mono- 
oxygenase enzyme, which catalyses oxidation of endogenous and exogenous 
compounds in the body, with, for example, among its varied roles, 
detoxification of drugs. Its structure still remains unknown because of the lack 
of suitable samples for crystallographic studies, except for P-450cAM. The latter 
protein provides a suitable model for building P-450NF, for which the sequence 
is known and exhibits significant sequence homology. Similarity between 
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Figure 13.23 Schematic representation of MCPC 603 myeloma VL domain (a)and T. 
dyscritum haemerythrin (b). Polypeptide chain for correctly and incorrectly folded 
haemerythrin (right) and VL (left). Correct structures are shown in the upper part of the 
figure. The chain is represented by R-carbons only. Bold lines correspond to residues 
lysine, arginine, aspartic and glutamic acid (from Novotny et al. with permission [89]). 

P'450CAM and P-450NF was assessed using the global al ignment method of 
Needleman and Wunsch and local al ignment (see below)[97, 98]. From this 
study, it appears that the necessary changes in residues mainta in  the overall 
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hydrophobicity and a similar environment for the haem group, whereas space 
available for the substrate is increased. Successful docking in the postulated 
binding pocket with known substrates of very varied types supports the model 
of active site proposed. From energy minimization it was suggested that van 
der Waals terms are larger than electrostatic ones in the enzyme-substrate 
interaction (Figure 13.24). 

13.6  EVALUATING SIMILARITY 

Rapid comparison of protein structures regarding the sequence of amino acids 
or their actual 3D organization is a problem of considerable importance. 
Identifying residues essential for maintaining the structure or functionality is 
a determining step to understand the properties of known molecules and 
predict the behaviour of newly isolated or synthesized structures. 

In simpler cases, for closely related molecules, a simple, qualitative 
sequence inspection is sufficient to detect significant similarity. In more 
complex situations, it can be necessary to quantify the degree of similarity, for 
example to construct an evolutionary tree (Figure 13.25), or even to explicitly 
build the best "alignment" (residue-residue correspondence)between two 
structures. Finally, for proteins having diverged long ago, any similarity could 
be hard to recognize on sequences, although related functions and 3D 
structures may be largely maintained: in such cases, comparisons must be 
carried out directly on the spatial location of amino acids. 
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Figure 13.24 Fitting testosterone (bold lines} to the modelled active site of P-450 
nifedipine oxidase (from Ferenczy and Morris [96]). 
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Figure 13.25 An evolutionary (phylogenetic) tree obtained by comparing sequences of 
B-haemoglobin chains and related variants in various species. (The length of each 
branch is proportional to the number of point mutations to pass from one sequence to 
the next one.)(From Cantor and Schimmel [2], p 79, adapted from Dayhoff et al. with 
permission [ 103].) 

These various aspects can be summarized by the three following typical 
examples, which are extracted, among others, from Lesk [55]" 

1. The high similarity observed between proinsulin chains of man, pig, cow, 
etc. indicating an evolutionary relationship is confirmed by their 
identical function. Pig insulin is used clinically in the treatment of 
diabetes in man. 

2. Sperm whale myoglobin and lupin leghaemoglobin (with only 15% 
common residues) have similar secondary and tertiary structures, and are 
distantly related proteins. 

3. On the contrary, chymotrypsin and subtilisin (although a common 
proteolytic function and a common catalytic mechanism) are not similar 
nor related. They correspond to a convergent evolution. 

In the protein field, this problem of evaluating similarity between two 
molecules ("where, why, and to what extent, two protein sequences are 
similar" [98]), was tackled at different levels of complexity, depending upon 
the knowledge available or the degree of precision and quantification desired. 

A first type of comparison involves only the sequence (the order in which the 
amino acids are linked in the chain). This is a challenge of prime interest, since 
the sequence is known well before the 3D structure is solved, and sequence 
comparisons are at the basis of many interpretative or predictive studies. More 
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sophisticated approaches deal with 3D coordinates to specify spatial 
similarities. From a theoretical point of view, such studies were necessary to 
determine to what extent sequence similarity can confidently reflect 3D 
similarity. At a more practical level, comparisons of 3D structures are useful 
for understanding the differences in properties (say binding ability, for 
example) of neighbouring proteins, or for defining templates to be used in 
protein modelling by homology. 

13.6.1 Sequence similarity 

Looking first at 2D comparisons (sequence level), two approaches can be 
considered: 

�9 sequence comparison to detect common features, 
�9 sequence alignment which defines the best one-to-one correspondence 

between amino acid sequences of two proteins. 

A very basic tool in these comparisons (providing a simple approach and an 
attractive method for visualizing the results) is a dot-plot similarity matrix. 
The sequences are recorded along the two axes of a 2D graph. In this graph, 
each point corresponds to one residue (of the first protein) along the vertical 
axis and one (of the second protein) along the horizontal axis (in 3D 
applications, for the sake of simplicity, points would correspond to a-carbons, 
to which each residue is reduced, ignoring details of side chain arrangements) 
[99]. Points are encoded according to any predefined criterion of similarity, and 
are marked (as dots, for example) if this similarity criterion is met. Parts of the 
compared sequences which are similar are clearly identified as a succession of 
consecutive dots parallel to the diagonal. Insertions or deletions are detected as 
skips to a parallel segment {Figure 13.26). 
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Figure 13.26 Diagonal plot of fragment similarities between two domains of 
rhodanese (respectively, residues 1-150 and 151-293). Each dot corresponds to a pair of 
residues (from Vriens and Sander with permission [100]). 
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In thei r  s impler  form, h o m o l o g y  matr ices  indicate  only  the ident i ty  be tween  
the i th  and j th residue in the two sequences  (scored as 1 or 0). A s imilar  b inary  
coding is the rule for nucleot ides  in DNA.  However,  for proteins,  various other  
propert ies  can be encoded, such as the na ture  of the residue, charge, 
hydrophobici ty ,  bulkiness ,  or p ropens i ty  to form cz or ~ secondary  structures.  
We will  develop this point  later. For example,  Greer  proposes gathering 
residues into classes of equivalence (depending upon  bulk,  size, charge, 
polarity, etc.), wi th  ident i ty  quoted  as 1, and intra-class equivalence as 0.5 [61, 
6 l a], according to the scheme of McLachlan  [101, 102]. 

Classes of equivalence of na tura l ly  occurr ing amino  acids are: 

(D,E,K,R) (G,A,V)(A,V,L,I)(V,L,I,M} 
(F,Y,W) (S,T)(Q,N). . . (G,P,  for turns) 

Ano the r  widely  used scoring process (particularly w h e n  dis tant  proteins are 
to be c o m p a r e d ) i s  the M D M 7 8  mat r ix  of Dayhoff.  This  mat r ix  (empirically 
derived from evolu t ionary  pat terns)  reflects the amino  acid m u t a t i o n s  per 100 
residues, and scores t h e m  from a logar i thmic  scale of probabi l i ty  for residue 
rep lacement  [103, 104] (Table 13.7). 

Table 13.7 Dayhoff mutational substitution matrix (from Gray [99]). 

A R N  D C Q E G H I L K M  F P S T W  Y V B Z X 

A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -4 1 1 1 -6 -3 0 0 0 0 
R 
N 
D 
C 
Q 
E 
G 
H 
I 
L 
K 
M 
F 
P 
S 
T 
W 
Y 
V 
B 
Z 
X 

6 0 -1 --4 1 -1 --3 2 -2 -3 3 0 --4 0 0 -1 9. --4 -2 -1 0 0 
9. 2 --4 1 1 0 2 - 2  --3 1 -9. --4-1 1 0 - - 4 - 2 - 2  2 1 0 

4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 3 3 0 
12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 -4 -5 0 

4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2 1 3 0 
4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 2 3 0 

5 -2 -3 - 4 - 2  - 3 - 5 - 1  1 0 - 7 - 5 - 1  0 - 1  0 
6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2 1 2 0 

5 2 -2 2 1 -2 -1 0 -5 -1 4 -2 -2 0 
6 -3 4 2 -3 -3 -2 -2 -1 2 -3 -3 0 

5 0 - 5  -1 0 0 -3 - 4 - 2  1 0 0 
6 0 - 2 - 2 - 1  - 4 - 2  2 - 2 - 2  0 

9 -5 -3 -3 0 7 -1 -5 -5 0 
6 1 0 -6 -5 -1 -1 0 0 

2 1 -2 -3 -1 0 0 0 
3 -5 -3 0 0 -1 0 

17 0 -6  -5  -6  0 
1 0 - 2  -3 -4 0 

4 -2 -2 0 
2 2 0 

3 0 
0 

Value quoted at position (i,j) represents the likelihood for residue i (with respect to j) 
to replace residue j (with respect to i) during the process of evolution. 
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Comparisons can, of course, be carried out by looking directly at the 
characteristics encoded for individual residues i and j. However, sometimes 
one prefers to plot at point i information corresponding to a local window and 
representing a weighted score for a short segment centred on position i. 

13.6.2 Optimal alignment 

More detailed analysis requires the best alignment (one-to-one correspondence 
of residues) to be determined, that is the highest scoring correspondence on the 
entire sequences (summing individual pairwise correspondence scores) and 
accommodating the possibility of insertions and deletions, i.e. gaps in the 
correspondences. A basic and widely used solution is the algorithm proposed 
by Needleman and Wunsch [97], which relies on dynamic programming, the 
optimal alignment being obtained by induction. The best score for an 
alignment of sequences ending at residue i through a pair of residues i (of the 
first protein) and j (of the second one)is obtained by adding the score of the pair 
(i,j) to the best score for the preceding optimal alignment (that of a sequence 
ending at i-1). A matrix of scores is progressively computed, then the overall 
alignment is obtained by tracing back along the path of induction that gives 
the highest score. 

A gap in the correspondence between sequences decreases the similarity, 
and is assigned a penalty. Differing values distinguish gap start and gap 
extension so as to reduce the number of unmatched residues and gather them 
in few segments. A small penalty will lead to many (unrealistic) gaps. Too large 
a penalty limits the number of possible solutions examined. A good 
compromise seems to be fixing the penalty at two or three times the score for 
matching identical residues (Figure 13.27). 

Global alignment over the entire sequence does not detect local similarities 
over short stretches which do not contribute to the global optimal alignment. 
To extract these regional similarities, various modifications of the 
Needleman-Wunsch algorithm have been proposed. Sellers [106] goes over the 
path of induction through the sequence in the forward and reverse directions 
and selects the common parts, whereas Boswell and McLachlan [107] 

Figure 13.27 Two similar proteins with a deletion from the left molecule and 
insertion into the right one (from Rossmann and Argos with permission [105a]). For the 
other parts, the topology (fold)is identical in both structures. 
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introduced a damping factor reducing the contribution of distant parts of the 
alignment. Comparison of fixed length segments was also investigated [101, 
102, 108, 108a], but suffers from interruption by insertions or deletions. 

A similar approach was developed by Morris (the RELATE program)[98]. A 
window from one protein is displaced along the second structure and the 
similarity is scored. Then the window is displaced along the first structure and 
the comparison is repeated, and so on. The best score is stored with the 
position of the similar segments. A display where each amino acid is 
represented as a colour bar in the sequence allows for an immediate perception 
of similarity. Colour groups can be based on hydrophobicity, charge or polarity, 
acidic character, bulk, propensity to be involved in a secondary structure, etc. 
Alternatively, a dot matrix analysis offers an easy way in which to rapidly 
visualize the degree of similarity between homologous proteins. 

Identifying similar sequences in two proteins would, in principle, require a 
high number of comparisons of residues. However, the computational task can 
be reduced by substantially avoiding pairwise comparisons, and using a look- 
up table indicating for each of the 20 amino acids its diverse locations along 
the chain of the first protein [109]. Equivalences for the successive residues of 
the second chain (with their position offset with respect to the first chain) are 
readily identified, and the similar sequences (residues identical to those of the 
first protein with the same offset) are detected and displayed in a dot matrix 
homology plot. Groups of identities can also be sought in view of increased 
speed. 

Although the problem of optimal alignment has prompted numerous 
studies, simultaneously aligning more than two structures has so far remained 
an open challenge [55]. 

13.6.3 3D similarity 

Looking at 3D similarity poses the problems of identifying common 3D 
features, and possibly superimposing parts of the molecular framework. These 
problems have already been discussed in Chapter 11, and here we just recall 
the essential points. 

Evaluating 3D similarity 
When looking for structural analogy, a rapid geometrical search in protein 
tertiary structures may be very useful. An early solution in the protein field 
was proposed by Lesk for the automatic identification of a user-defined pattern 
of atoms in a chain represented by the coordinates of the ~-carbons [110]. 
However, this algorithm, although appropriate for searching for patterns of 
atoms in proteins, generates a large number of atom combinations and suffers 
from a need for considerable computational requirements. A two-stage 
procedure using Lesk's algorithm as a precursor of Ullman's subgraph 
isomorphism method [111] leads to a definite improvement [7]. As to the 
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geometrical transformations to be performed for superimposition of molecular 
frameworks, the algorithm of McLachlan is widely used (see Chapter 11) [112]. 

In an earlier attempt to detect similarity in the 3D structure of proteins, 
Remington and Matthews proposed dividing the two structures into 
overlapping segments of a predetermined length and fitting all pairs of 
segments by a least-squares procedure, the RMS deviations being plotted in a 
comparison matrix [ 113]. 

Rossmann and Argos [105-105b] developed procedures for identifying 
structural and topological similarities thanks to a probability function with 
two parameters. The first one indicates the spatial proximity between pairs of 
residues i and j, and the second the relative orientation of successive residues. 
A weighting factor allows for giving more importance to topology or spatial 
equivalence, or both. This function can also skip over portions which are 
inserted in one molecule. For any given orientation of the two molecules, 
equivalences are first determined (starting from highest P, values, then 
extending the sequential equivalences). Systematic rotations of one of the two 
proteins are carried out in a search on a grid of the three Eulerian angles [114]. 
The number of equivalent residues for each node of the search grid indicates 
the rotation which best relates the two molecules. 

Barton and Sternberg [115] address the problem of comparing loops, which 
may be of different lengths, and extracting rules as to loop formation to be 
input into a knowledge-based system. They extended to 3D comparisons on C~ 
coordinates the algorithm of Needleman and Wunsch, originally developed for 
sequence comparison, and proposed a method able to align equivalent regions 
automatically. This method seems particularly suited to the comparison of 
short variable regions bounded by structures of high similarity. These regions 
(conserved cores of ~-helices and [~-strands) are first superimposed, and for the 
intermediate part linking the regular regions (loops) a similarity matrix is built 
from distances between residues. The best alignment calculated is stored as a 
list of vectors joining t~-carbons for display (Figure 13.28). 

Comparison of distant proteins 
Comparison of secondary-structure features in the analysis of proteins with 
different sequences but common folding motifs enlightens new facets of 

,----.)', 
// 

Figure 13.28 Alignment of loop regions. A model for a [~-turn of chymosin (dotted 
line} from the known structure of endothiapepsin {bold line} and deletion of a single 
residue {from Blundell et  al. with permission [83]). 
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structural similarity [116, 117]. As a first step, a system is built for retrieving 
secondary structure patterns from 3D coordinates (extracted, for instance, 
from the Brookhaven Database). Although a detailed search can be carried out 
from C~ coordinates [79], a simple vectorial representation was preferred for 
characterizing ~-strands and helices. 

According to the method of Kabsch and Sander [118], secondary structural 
elements are recognized by calculating the hydrogen-bond pattern of atoms 
from their X-ray coordinates. An alternative approach tries to match a 
template built from the coordinates of four {x-carbons (with ideal angles for 
helices or strand) to each four-residue section of the protein. From the 
starting and ending residues of the patterns recognized, the program 
calculates the axes of {x-helices and strands. Then it evaluates the angles 
between each pair of axes, distances between their mid-points and their 
closest approach distance. These parameters are stored in a matrix 
representing the protein. This matrix will be used in the POSSUM program 
(Protein On-line Substructure Searching-Ullman Method} to recognize a user- 
defined secondary pattern [116-117]. 

The protein is considered as a labelled graph: nodes represent secondary 
structures (either helix or strands) expressed in the linear representation 
{vector) developed, and edges correspond to the relationships between them 
(inter-vector angles and distances). The query is also described in terms of a 
similar graph according to the pattern to be recognized. Ullman subgraph 
isomorphism (in a slightly modified version, introducing some tolerance 
values and allowing for the retrieval of all occurrences of matching 
substructures) is then used to determine whether the query graph is contained 
within the graph representing the protein. Tests with the I]-structural motifs of 
Richardson [119] show the general effectiveness of the matching procedure, 
with the advantage that it is not necessary to specify all the possible distances 
and angles in the search pattern [116] [Figure 13.29]. 

Thanks to this methodology, a comparison of the tertiary fold in the 
Salmonella typhimurium Che Y chemotaxis protein and that of a GDP binding 
domain of Escherichia coli elongation factor Tu (EF Tu) demonstrates definite 
similarity, far beyond the previously recognized resemblances of each protein's 

Figure 13.29 Some of the 37 Richardson ~-sheet patterns. Drawings correspond to 
patterns 1, 5, 21, 29, 37 (from Richardson with permission [119]). Arrows point toward 
the C-terminus. Connections between strands are drawn as double lines (if they occur 
above the plane or as single lines (below the plane). 
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(a) 

v 

Figure 13.30 Schematic representation of (a) Che Y and (b) EF Tu (GDP binding 
domain) according to the topological representation of Sternberg and Thornton [120]. 
Circles = s-helices, triangles = ~-strands (apex down indicates that the strand is viewed 
from the C-terminus; shaded parts represent the extra strand and helix in EF Tu)(from 
Artymiuk et  al. with permission [116]). 

fold to that  of a generic nucleotide-binding domain (Figure 13.30). This 
intriguing result, between two structures lacking significant sequence 
homology, may reflect a particularly stable folding motif  or an evolutionary 
relationship, but one that  is so remote that  sequence homology has been lost, 
or finally, binding to receptors wi th  related structures. According to the 
authors, it may possibly reveal some previously unsuspected link between 
families of signal-transduction proteins, playing crucial roles in the regulation 
and control of cell functions in prokaryotic and eukaryotic cells, respectively 
[116, 117] (Figure 13.31). 

Representation of 3D features 
As for displaying inter-sequence relationships, dot maps also offer an efficient 
way in which to visualize, in easily understandable pictures, essential features 

21 50 

CheY: V R N L L K E L G F N N V E E A E D G V D A L N K L Q A G G 
�9 �9 �9 , , �9 . , �9 . , �9 �9 , - . . 

E F T u :  V R E L L S Q Y D F P G D D T P I V R G S A L K A L E G D A 

154 183 

Figure 13.31 Poor homology in the sequences of Che Y and EF Tu (,represents 
identity, : represents potentially conservative substitutions} between stretches 
appearing in structurally unrelated parts of the respective proteins {from Artymiuk 
et  al. with permission [116]). 



4 5 6  MODELLING PROTEINS 

related to either the geometrical organization of a single protein or some 
similarity (according to a user-defined criterion) between two macromolecules.  

A d i s t a n c e  m a p  [121, 122] provides a simple way in which to understand the 
3D folding of a protein in a 2D representation. It is built  by plotting the relative 
distances r,, between all pairs of (~-carbons for residues i and j, and colouring 
areas according to given ranges of d, (with the advantage of a representation 
independent of the coordinate system). Such a map allows for easy 
identification of neighbouring residues (darker regions in the scheme)(Figure 
13.32). Proximities occur most  frequently for residue neighbours in the 
sequence, i.e. those appearing near to the diagonal. Other  dark regions indicate 
residues which are neighbours in space but apart in the sequence. They 
correspond to a folding of the polypeptide chain, which is clearly 
demonstrated. Characteristic patterns can also be associated with the basic 
features of the secondary structure (helices, sheets, etc.). 

Various other analyses can be carried out from a distance map. For example, 
the number  of residues within a fixed distance (say 10 A) of a given residue can 
be evaluated, giving some insight into the solvent accessibility of this residue. 
Similarly, a difference map between an observed and a computed conformation 
visualizes the degree of similarity between them. Interaction energies between 
residues or the distribution of hydrogen bonds can also be displayed. Distance 

50 
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B 

37:  

~. j ' v u , ,  �9 

.~-t~ v" ... 

0 1 O0 150 

�9 �9 ~ . o  

50 

Residue no. 

Figure 13.32 Distance map for the native structure of myoglobin. Dark regions 0 A < 
r,, < 15 A; close areas r,, > 30 A; blank areas 15 A < r, < 30 A. Dark regions perpendicular 
to the diagonal correspond to folding in antiparallel mode, and to a parallel mode for 
arrangements parallel to the diagonal (from Ooi and Nishikawa [121])and adapted from 
Widom and Edelstein [5] p 555 for the scheme. 
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maps are also useful for detecting homology in sequences of proteins which 
have the same (or a similar)function.  They allow one to examine whether 
folding of polypeptides having common residues gives rise to the same tertiary 
structure. In such a way, distance maps constitute a first rapid approach that 
can later be complemented by a visual superposition method for more detailed 
comparisons. 

Structure prediction from sequences can at most  have a limited success, 
but hydrophobici ty  profiles (which are also directly available from the amino 
acid sequence) can give valuable complementary information about the 3D 
structure. Given an amino acid, hydrophobicity (for which various scales 
have been proposed)can be viewed as its relative preference for a non- 
aqueous medium (non-polar solvent or interior region of proteins) rather than 
the aqueous external region. In fact, for a protein, one cannot look only at 
the hydrophobicity of each amino acid in the chain, but rather plot a value 
averaged on a moving window centred on the residue vs. its position in the 
sequence. Such profiles can be used to detect segments rich in residues with 
hydrophobic side chains, which tend to bury themselves in the interior part, 
avoiding the aqueous surrounding. This gives a method by which to 
distinguish interior or exterior regions. The example of lysozyme shows 
quite a fair agreement of this method (with a nine-residue window) with 
solvent accessibility computed from the 3D structure [123, 124] (Figure 
13.33). 

"r" 

5O 
0 50 100 

Residue number 

100 

5o 

Figure 13.33 Hydrophobicity (bold line) and computed fractional accessibility (thin 
line) profiles for lysozyme using a nine-residue window. Pronounced minima of the 
hydrophobicity profile correspond to major solvent-accessible regions, and maxima to 
buried parts (from Rose et al. with permission [124]). 
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Figure 11.15 2D schematization: dots correspond to the intersection of the projection 
lines (along z) with the two molecular surfaces. T is the translation vector bringing the 
surfaces into closest contact (from Dean with permission [67]). 

designing new active drugs, will be discussed in the next chapter, which is 
dedicated to the pharmacocophore approach. 
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Closed-shell 273 
CNDO method 286 
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- structure calculation 429 
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- Crandell and Smith algorithm 341 
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- of surfaces in drug design 370 

Complexation 324 
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Computational  
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- effort 269 

Computer  building (in protein anlysis) 426 
Computer  experiments 172 
Computerized models 266 
CONCORD program 227, 232 
Configuration interaction 177, 280 

- state functions 280 
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integral 173 
space 172 

CONFOR program 428 
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- analysis (via molecular mechanics} 151 

flexibility 233 
- maps 156 
- parameter (Chou-Fasman model)434 
- search 

- Monte Carlo methods 209 
- tree search 208 
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- molecular dynamics 216 
- ellipsoid algorithm 216 
- generic shape algorithm 217 

- space 197 
- cycloalkanes 211 
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cycloheptadecane 219 
cyclononane 217 
glycolipids 215 
macrocyclic compounds 217 
n-octane 219 
polyalanines 214 
polypeptides 213 
tetrahydroionone 214 
tyrocidine A 214 

- units 225 
Conjugate gradient (see energy minimization) 
Connolly molecular surface 61, 64 
Connolly surface 310 
Constraints 

- minimization under 214 
- NOE 215 
- potential function 194 
- ring closure 207 

Continuity (of curves) 27 
Contour levels 302 
Contracted Gaussian functions 278 
CONVERTER program 234 
Coordinates 

device 35 
- viewing 33 
- world 32 

Coordination number 180 
Core 

- core repulsive 288 
- electrons 309 

CORINA program 228 
Correlation energy 279 
COSY 96 

- in protein analysis 418, 419 
Coulomb 275 
Coulour-coded dots 314 
Coupling constants (J)93 

in protein analysis 416, 419, 422 
Co-volume 257 
Covalent bonding 285 
CPK images 62 
CPSA 259 
Crambin 98, 150 

protein 171 
volume 241 

Crandell and Smith algorithm 341 
Crippen algorithm 201 
Cross terms 135 
Crown ethers 217 
Crystal 

- lattice 82 
- state (molecular surface and volume in) 

259 
- systems 83 

CSS (see common substructure search) 
Cube method (surface, volume 

representation) 248, 249 
Cutoff 150, 208 
Cycloalkanes (conformational search) 211, 

217 
Cycloheptadecane (conformational search) 

219 

Cyclononane (conformational search) 217 
Cyclosporin 98 
Cythochromes 432, 445 
Cytisine 395 

1,2-difluorohydrazine 271 
2D,3D,4D NMR 93, 95, 103 

- in protein analysis 415, 425 
3D Databases 

Brookhaven (see Brookhaven Protein 
database) 

of calculated structures 120, 231 
Cambridge (see Cambridge 

Crystallojaphic Database) 
- in drug design 376 

Davidon, Fletcher, Powell method (see energy 
minimization) 

DDM (see difference distance matrix) 
De Broglie relation 90 
'de novo' design (drug design) 235, 379 
Density 

- matrix 277 
- Functional Theory 293 

Design 
- site directed 369, 379 
- 'de novo' 379 

Deoxyribonucleic acid (see DNA) 
Determination of stabilomers 151 
DFP (see Davidon, Fletcher, Powell method) 
DHFR 367, 368, 384 
Dielectric constant (distance dependence) 

150, 188 
Difference distance matrix (DDM)339, 352 
Diffusion mechanisms ] 93 
Dihydrofolate reductase (see DHFR) 
Dihydrofolic acid 330, 355 
Dimethyl  phosphate anion 179 
Dipole moment  292 
Discrete Variational Method 297 
DISGEO program 200, 430 
DISMAN Program 200 
Display processor 4 
Distance bounds 200 

in docking 375 
Distance geometry 200, 220, 226 

constrained (for proteins) 431 
in DNA structure determination 430 
in drug design 394 

- in model builders 222 
- in comparative model building for 

proteins 443 
- in protein tertiary structure calculation 

430 
Distance map (in proteins comparison) 456 
Distance matrix 

- difference 339 
- in pharmacophore search 349 
- in protein structure prediction 43 7 

Distribution functions 176 
DNA 99, 242 

- structure determination by distance 
geometry 430 
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DOCK program 359, 372, 375 
Docking 213, 367, 370 

- automatic 376 
Dot 

- algorithm (Connolly)243, 248 
- plot similarity matrix (proteins)449 
- representations 61 

Drug 
- design 195 
- receptor interactions 363, 364 

3D substructure search 233 
Dynamics 171 

ECEPP program 146, 428 
EFF 146, 157, (see empirical force field) 
Effective Hamiltonian 289 
Elastase 443 
Electric Fields 301 
Electron 

acceptor 306 
correlation 279 

- densities 266, 301 
- density {RX} 87 
- density deformation 310 
- diffraction 91 
- gas 295 

Electronegativity equalization 136,137 
Electronic charge 309 
Electrons 305 
Electrophile 304 
Electrophilic 

- attack 304 
- interactions 304 
- properties 301 

Electrostatic effects 136 
Ellipsoid algorithm 216 

in docking 375 
EMBED program 200 
Embedding 200 

energy 205 
EMO program 165 
Empirical force fields 125, 126, 146, 147, 157 
Endothiapepsin 453 
Energy 

- based prediction {protein structure} 427, 
428 

- diagram 306 
- splitting 288 

Energy Minimization 140 
Broyden, Fletcher, Goldfarg, Shanno 

method (BFGS) 144 
- Conjugate direction minimization 141 
- Conjugate gradient minimizat ion 142 
- Davidon, Fletcher, Powell method (DFP) 

144 
- Fletcher Reeves method 142 
- Newton Raphson method 143 
- Pattern search 142 

Polak Ribiere method 142 
Powell method 141 
Simplex method 141 

- Steepest descent method 142 

Engler force field 151 
Ensemble approach (drug design)394 
Enthalpy 190 
Entropy 190 
Enzyme 184 

- inhibitors 211 
Equilibrations 175 
Escherischia Coli elongation factor Tu 454 
Exchange 

operator 275 
correlation energy 294 
repulsion potential 318 
repulsion 320 

Expert system (in model builders} 223 
Extended Htickel method 283 

Face 
back {elimination} 39 
external 40 
internal 40 

Factor amplitudes 194 
Femtosecond 184 
Ferredoxin 415 
Ferrocene 306 
Ferruginine methiodide 395 
Filiation {conJormational} 152 
Fine Chemical Directory {FCD 3D)232 
Firehose model {proteins} 431 
Fitting distance 340 
Flavodoxin 430 
Fletcher Reeves method {see energy 

minimization} 
Flexibility 180 
Flexibility {in Drug-design)366, 374, 375, 392, 

393, 398 
Flexible fitting 233, 338 
Folding 187 
Force field 124, 127, 175 

-AMBER 134, 136 
- Engler 151, 166 
- MM3 146 
- parameterization 133 
- Urey Bradley 133 
- valence 133 

Four-body 178 
Fractal 

surfaces 261 
dimension 262 

Fractional configurational flexibility 242 
Free energies 172 
Free energy {of binding) 397 

- perturbation 191 
Free surface 260 
Frontier orbitals 303 
Fuzzy match {in molecular similiarity)349 

Gaussian 
- functions 278 
- quadrature 173 

Generic shape algorithm 217, 219 
Geometrical 

- comparisons 332 
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- complementarity 359 
- transformation 332 

- 3D transformations 19 
Homogeneous coordinates 17 
Inverse transformation 19 
Matrix representation 17 

Geometry 
- optimizers 292 
- solid constructive 30 

GEPOL program 247 
Gibbs free energy 190 
GKS (Graphical Kernel System)(see Graphics 

libraries) 
Globins 432 
Globular proteins 195 
Glucagon 217 
Glycolipids (conformational search)215 
Gnomonic projection 356 
Gouraud shading 53 
Gradient minimizations 292 
Gramicidin 429 
Graphics libraries 14 

-CGI 16 
-GKS 15 
- OPEN 16 
- PHIGS 16 

Graphics primitives 59 
Graphics systems 

- random scan 3, 4 
- raster scan 3 

3D Grid 72 
Grid method 

- docking 375 
- hydrogen bonding (drug design)380, 381 
- interaction energy calculation 369, 370 
- surface, volume representation 248, 249 

Grid search (in conformational space) 199 
GROW program 387 

'Hand and glove' concept 392 
H20 315 
Half toning 6 
Halogenation reaction 304 
Hamiltonian 270 
Hammer projection (protein representation) 

415 
Hard 

spheres 175 
systems 324 

Hartree-Fock 273 
Heat of formation 139, 290 

in MM2 140 
Heat of vaporization 257 
Helix (proteins) 408 

- recognition 423 
Hellmann-Feymann theorem 311 
Hemerythrin 445 
Haemoglobin 413 
HETCOR 96 
Heterocycles 304 
Hidden 

- line removal 38, 47 

- surface removal 38 
Hippurate 3 76 
HIV protease 379, 388 
Hodgkin indice (of similarity)353 
HOMO 304 
Homogeneous coordinates (see geometrical 

transformations) 
Homology 

- in model building for proteins 431 
- structural 432 
- sequence 432 
- matrix 450 
- modelling (protein structure)443 
- in comparative model building 440 

Hopfield neural networks 351 
Host-guest complexation (in molecular 

mechanics) 162 
HSV colour model (see colour model) 
Htickel theory 267, 283 
Hydrated crystals 195 
Hydration 180, 259 
Hydrazine 291 
Hydrocortisone 250 
Hydrogen bonding 111, 137, 188, 394 

- ability 349 
- and similarity 355 
- in AMBER 149 
- in protein secondary structure recognition 

424 
- in protein similarity search 454 
- in proteins 409 

Hydrophobic 180 
- character of protein residues 406 
- interactions 179, 431 
- pairing function of residues 458 
- pockets (in a receptor} 394 

Hydrophobicity 
- parameters of residues 437, 458 
- profile 457 

Hyperfine splittings 284 

Illumination 
diffuse 50 
point source 50 

Images 
- 4D 72 
- CPK 62 
- Shadowed 67 
- Solid 74 

Immunoglobulin 445. 
Importance sampling scheme 174 
INDO method 288 
Inference engine 224 
Information theory {in structure prediction} 

433 
Infrared 175, 272 
Insulin 150, 448 
Interaction energy (pairwise terms} 370 
Interconversion pathway 113 
Intermolecular interactions {and surface area} 

259 
Intermolecular potential {drug design} 394 
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Ion thermochemistry experiments 323 
Ion-dipole complexes 182 
Ionic 180 
Ionization energies 284 
Ions in aqueous solutions 189 
Isodensity surface 310 
Isoenergy surfaces 314 
Isosurfaces 317 
Isovalued envelope 71 

- drug receptor 363, 364 
- hydrophobic 431 
- ligand-biomolecule 365 

Isomerization (cis-trans) 114 

Karplus-Pople law 93 
in protein anlysis 416, 422 

Kinetically controlled processes 319 
Knowledge-based predictions (protein 

structure) 429, 431,440 
Kohn-Sham equations 294 

Lactalbumin ot 444 
Lactam antibiotics 391 
Laplacian 270, 310 
Lattice 

embedding 72 
dynamics 175 

Lattice forces (in molecular mechanics) 138 
Leads (in drug design)328,363 
Leapfrog algorithms 185 
Least-squares fit 290 
Lesk's algorithm 343 
Ligand 

- adaptation 392 
- biomolecule interaction 365 
- points 397 
- site 381 

Linear combination of 
- atomic orbitals 275 
- Gaussian-Type Orbitals 297 

Line drawing 10 
Liquid argon 176 
Local 

density approximation 294 
operator 294 

'Lock and key' concept (in Drug design)365 
Local irregularity (surfaces)262 
Local min imum 198 
Lone-pairs 133, 148, 304 
Look up table 6 
LUDI program 388 
LUMO 304 
Lysozyme 241,444, 457 

fractal dimension 262 

MACCS 227 
- MACCS Drug Data Report 3D 232 
- MACCS 3D 233 

Mach bands 53 
MACRA program 356 
Macrocyclic compounds 

- conformational search 217 

Macroscopic 171 
Many-body 272 

- perturbation 281 
Map of isovalued contours 77 
Mapping of the EMP value 314 
Matrix of transformation (see geometrical 

transformations) 
MAXIMIN program 145, 151 
MAZE program 254 
MBLB program 221 
M B P T  267 
MCMM method 209 
MCSCF 267 
MCSS {see maximal common substructure 

search) 
MEP-derived charges 313 
Met-enkephalin 206, 212 
Methane 178 
Methotrexate 330, 355, 367, 374, 381 
Metmyoglobin 372 
Metric matrix 202 
Metropolis criterion 211, 212, 375 
Michaelis-Menten model 399 
Microclusters 190 
Microscopic 171 
Microwave spectroscopy 91 
Miller indices 83 
Mimicry {3D)365 
MINDO method 290 
Minimal basis sets 278 
Minimization under constraints 214 
Minimum sphere approximation {surface, 

volume) 253 
Mirror image convention 188 
MM (see molecular mechanics) 
MM1 134 
MM2 132, 135, 145, 147, 157, 171, 175, 224, 

226 
MM2MX program 164 
MM3 157, 175 
MMP2 139 
MNDO method 291 
Model 

- chicken wire 24 
- shading 50 

Model builder 120, 220, 301 
- COBRA 223, 234 
- CONCORD 227, 234 
- CORINA 228 

M B L B  2 2 1  

SCA 222 
SCRIPT 222 

- WIZARD 223 
Model building 

- comparative (for proteins) 431 
- by homology for proteins 440, 443 

Model of transition state 160 
Modified EH 285 
Molar refraction 257 
Molecular Access System 232 
Molecular Atom Centered Radial Grid (see 

MACRA) 
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Molecular 171 
- comparisons 256 
- Electrostatic Potentials 301 
- orbitals 266, 301 
- properties 301 
- recognition 195, 318 
- shape analysis 256 
- shapes 309 
- structure 171 
- superimposition 332 
- dynamics 

- in conformational analysis 205, 216, 
219, 220 

- constrained 205 
mechanics 124 

Molecular maximal common substructure 
search 332, 349 

Molecular Surface Interaction model 259 
Moller-Plesset 281 
Molten salts 184 
Monoatomic differential overlap 288 
Monte Carlo 171 

- methods 211,219 
- in conformational search 209 
- Multiple Min imum method (see MCMM) 

MOPAC 292 
- program 232 

Morse potential (see potential) 
MP2 282 
MP3 282 
MP4 282 
Mulliken population analysis 313 
Multiple 

- min imum problem 198 
- scattering 295 
- zeta basis sets 278 

Multipole 
- expansion 313 
- multipole interactions 292 

Muscarone 395 
Mutational substitution matrix 450 
Myoglobin 241,381,412 

'Negative image' of a receptor 370 
N-butane 186 
NADPH 381 
Natural orbitals 308 
NDDO 291 
Neural networks 

in protein structure prediction 435 
in similarity search 351 

Neutron scattering 89, 176 
New materials 282 
Newton Raphson method (see energy 

minimization) 
Newtonian mechanics 184 
NH3 315 
Nicotine 395 
NMR 175 

- data in protein analysis 416, 421 
- spectroscopy 92 

N-octane (conformational search)219 

NOE 93 
- constraints 194, 215 
- and distance geometry 200 
- in protein analysis 418, 419, 423 
- transferred 102 

NOESY spectra 96 
- in protein analysis 419 

Non degenerate minima (protein analysis) 
429 

Non-local gradient correction terms 295 
Nonpolar residues 179 
Nuclear 

attraction integrals 287 
Overhauser effect 194 
Overhauser Enhancement {see NOE) 

Nucleic acids 99, 110 
Nucleophile 304 
Nucleophilic 

- addition 180 
- attack 307 

Nucleoside 109 
Nucleotide 109 
Numerical  evaluation (surface,volume)240, 

247 

Octree 29, 47, 252 
Olefinic strain 155 
OPEN GL (see Graphics libraries) 
OPLS program 146, 150 
ORAL program 144 
Orbital 

- approximation 272 
- control 304 
- symmetry  303 

Organometallic reaction mechanisms 320 
ORTEP program 62 
OS (see olefinic strain) 
Overlap integral 277 

-(for similarity search)353 
Oxidation-reduction potentials 284 

P21 protein 427, 429 
Painter's algorithms 43, 62 
Papain 3 76 
Parallel computers (in similarity search) 

351 
Parameterization 288, (see force field) 
Parvalbumin 444 
Pattern search (see energy minimization) 
Pauli principle 272 
PDB (see Brookhaven Protein Database) 
PEFF program 134, 151 
Penetration integrals 321 
PEOE (see electronegativity equalization) 
Peptide 

- like ligands 387 
- bond 405, 407 

Pericyclic reactions 303 
Perturbation theory 282 
Pharmacophore 110, 282, 363, 364, 365, 377, 

391 
- search 233 
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Pharmacophoric 
- approach 328 
- matching 348 

Phase-space trajectories 185 
Phenoxyacetone 400 
PHIGS (Programmer's Hierarchical 

Interactive Graphics Standard)(see 
Graphics libraries) 

Phong (Bui-Tuong Phong) 
- model 50 
- shading 53 

Picosecond 186 
PI systems 

- in molecular mechanics 138 
- in MMP2 1 3 9  

Pierce point (in gnonomic projection)356 
Pilocarpine 363 
Planar projection (of a property) 78 
Plane equation 25 
Plastocyanin 381 
PLUTO program 62, 107 
PM3 method 292 
Polak Ribiere method (see energy 

minimization) 
Polar 180 
Polarizable electropole model 190 
Polarization functions 279 
Polarized basis sets 279 
Polyalanine {conformational search)214 
Polyhedra 28 
POLYMOD Program 255 
Polypeptide 98 

- conformational search for 213 
- surface 262 

POSSUM program 454 
Post-SCF 269 
Potential 

- Buckingham 130 
- energy surfaces 175 
- function 173 
- H i l l  1 3 1  

- Lennard Jones 131 
- mean force 182 
- Morse 128 

Powell method (see energy minimization) 
Prealbumin 367 
Prediction of protein secondary and tertiary 

structure 
- from the sequence 432 

Predictor-corrector 185 
Primary structure (proteins)408 

- determination 419 
Primitives 

- output 9 
- graphical (for proteins) 411 

Priority algorithms 43 
Probability distribution 172 
Projection 

- gnomonic 356 
oblique 32 
orthographic 32 
parallel 32 

- perpective 32 
Property shape 

- similarity 353 
Protein engineering 195 
Proteins 98, 405 

- Database (see Brookhaven Protein 
Database} 

Proton transfer 193 
Protonation 305 
Pseudopotentials 297 
Puckering 150 
Pyrrole 304 
Pyrrolidine 304 

QSAR 364 
Quadtree 30 
Quantitative invisibility model 48 
Quantum chemistry 171 
Quaternary structure {proteins} 411 
Quatemions 337 
QUEST program 106 
Quinoline 373 

R factor {see Residual Factor} 
R4238 (see analgesics} 
R6372 {see analgesicsl 
Radial distribution function 176 
Ramachandran map {protein analysis} 422, 

424 
Raman spectroscopies 272 
Random Incremental Pulse Search (see RIPS) 
Random sampling 172 
Random scan systems {see graphics systems) 
Raster systems (see graphics systems) 
Ray tracing 49, 54, 67 
Reaction pathway 116 
Reactivity 157 

- indices 266, 282, 301 
Rearrangeements (Carbenium ions} 159 
RECEPS program 394 
Receptor 367 

- based design 368 
binding regions 388 

- concept 363 
active site 367 
drug interactions 363 

- mapping 363, 391 
- pocket 400 
- site 

putative 389 
unknown 390 

Recognition 
- in drug design 364, 365 
- 3D motif 340 

Refinement under constraints (in protein 
analysis} 428 

Reflection 
- diffuse 51 
- specular 51 

Reflective factor 50 
Refraction 52 
Regioselectivity 316 
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RELATE program 452 
Relativistic corrections 297 
Relaxation phenomena 184 
Relaxing dimensionality 205 
RELAY (protein analysis)419 
RELAYED COSY 97 
Reliability of calculated structures 217 
Rendering 49 
Representation of property shape 71 
Residual factor (R) 88 
Resonance integrals 283 
Residue-Residue correspondence (see 

alignment) 
RGB colour model (see colour models) 
Ribonuclease S 241 
Ring protonation 323 
RIPS method 210, 211,218 
RMS difference (see RMSD) 
RMSD 339, 359 

- between atom locations 352 
Root mean square difference (see RMSD} 
Roothaan equations 277 
Rotation about an axis 20 
Rotational invariance 287 
Roughness (surface)261 

SCA program 222 
Scan 

- line 43 
- line buffer 44 

Scattering factor 87 
SCCC technique 285 
Schridinger equation 266 
Screening efficiency 349 
SCRIPT program 222 
Second-order perturbation theory 320 
Secondary structure (proteins)408 

determination 422 
Segments 37 
Self 

consistent field 275 
diffusion 193 

Semi-empirical models 269 
Sequence {proteins} 408 

- alignment 449 
- assignment 419 

comparison 449 
- homology 444 

similarity 449 
Serial sectioning 24, 71 
Serine protease 442 
Set reduction algorithm 344 
Shading 50 

Gouraud 53 
Phong 53 

Shadows 55 
Shape 

- complementari ty 366 
- matching (in drug design)368, 370, 375 
- selectivity 192 

Sheet 
- 13 pleated in proteins 408 

- recognition 423 
Side chain 

- in proteins 407 
- interactions 430 
- mutat ion 195 

Similarity 328, 352 
- 3D 452 
- and Boolean operations 354 
- evaluation {proteins} 447 
- indices 331 
- in model building for proteins 431 
- on isovalued envelopes 354 
- and overlap integral 353 
- and space structuralization 354 
- sequence in proteins 449 

SIMPLEX method 356 
Simpson's rule 173 
Simulated annealing 186, 212, 219 

- in docking 375 
- and polypeptide conformations 429 

Simulations 171 
Site 

- binding min imum volume 377 
- directed design {in drug design} 369, 3 79 
- hydrogen bonding points 375 
- ligand 381 
- modelling 397 

- points 398 
Slater 

- determinant 273 
functions 274 

SMILES program 227 
S.2 180 
Soft systems 324 
Solid 

- geometry 24, 30 
- models 302 

Solubility {aqueous) 257 
Solute-solvent interactions 182 
Solutes 178 
Solvation energy 246 
Solvent effects 137, 312 

- cont inuum model 13 7 
Solvolysis rate constants 157 
Space 

- image 39 
- object 39 
- partition 45 
- filling models 61 
- subdivision 69 
- stucturalization {for similarity search) 

354 
Spacer skeleton 383 
Spatial arrangements 266 
Spearman's rank correlation 357 
Spectroscopic properties 280 
SPERM program 358, 359 
Spin-orbitals 272 
Splines 28 

- in protein representation 414 
Split-valence basis sets 278 
SPROUT program 387 
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SSSM 350 
Statistical mechanics 171 
Stereochemistry 266 
Steric 

effects 153 
- in drug design 258, 393 
-energy 126, 139 

Stick models 61, 69 
Stochastic approaches (in conformational 

search} 209, 218 
Stochastification 187 
Strain energy 139 
Stretching (see bond stretching) 
Structural 

- analysis {proteins)408 
- parameters 292 
- parameter (Chou-Fasman model} 434 
- shape representations 61 
- shape similarity 353 

Structurally 
conserved regions {proteins} 442 
variable regions {proteins} 442 

Structure 
determination from homologous proteins 

442 
factor (RX) 87 
correlation (RX} 112 

Structured surface 239 
Strychnine 396 
Subimages 76 
Substance Similarity Search Modeller {see 

sssM1 
Substructure search 348 
Subtilisin 448 
Subunit optimization 207 
Subvoxel treatment 76 
SUMM program 210 
SUPER program 355 
Superimposition (]nolecular)332 

- matrix treatment 335 
- rotation angle method 336 
- quaternions 337 
- flexible fitting 338 
- atom correspondence 338 

Supermolecule 322 
Surface 

curved 26, 48 
modelling 24 
structured 72, 239, 249 
molecular 239 

- analytical evaluation 240 
- contact surface 243 
o numerical evaluation 240, 247 
- quantitative relationships 257 
- re-entrant surface 243 
- Richard's surface 243, 252 

- roughness 261 
- solvent accessible 241 
- structured 239, 249 
- van der Waals 240 
- complementari ty (in drug design)370 
- to volume ratio 258 

Symbolic primitives (protein representation) 
78 

Systematic search {in conformational space) 
199, 219 

Systematic Unbounded Multiple Minimum 
search (see SUMM} 

Templates 65, 68 
molecular 383 
sequence in homology building 432 

Tendamistat  416 
Tertiary structure [proteins)408, 410 

- calculation 430 
Tessellation (for active site detection)389 
Tetrahydroionone {conformational search) 

214 
Thermodynamic cycle 191 
Thermodynamically controlled processes 

319 
Thermolysin 211 
Thermolysis of alkanes 159 
THOR database 232 
Three 

- body 178 
- dimensional plots 302 

Thyroxine 372, 3 74 
TIP3P model 137 
t-mesh 77 
TOCSY 97 
Topography (and similarity} 329 
Topological model {volume evaluation)260 
Topology (and similarity} 329 
Torsion 128 

- angles {from coupling constants)93, 94 
- angles {protein structure} 422 

Transferrable fragments 313 
Transformation 

- best (in superposition)333 
viewing 32 

Transition state 182 
- from structure correlation 117 

Transition state model (in molecular 
mechanics} 160 

Transparency 50, 54 
Transport properties 184 
Transputers 351 
Travelling Salesman Problem 351 
Tree search methods {in conformational 

search} 208 
Triangle inequality 201 
Triangulation 74 
Trimethaphan 396 
Trimethoprim 367, 368 
Triphenylphosphine oxide 117 
Troponin C 444 
Truncation error 185 
Trypsin 381,384, 386, 388, 443 
Tryptophan 367 
Turn {protein) 410 
Two-electron integral 277 
Tyrocidine A 98 

- conformational search 214 
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Ullman's algorithm 233, 344 
- in 3D similarity for proteins 454 

Umbrella sampling 180 
Unimodal 182 
United atoms 133, 240 
Unpolarizable core 283 
Urey Bradley force field (see force field) 
USURF Program 249 

Valence electrons 308 
Van der Waals 

- atomic spheres 314 
- interactions 130 
- radii 309 
- r a d i u s  131,132, 134, 149 
- surface 240 

surface (representation on) 76 
volume 257 

Variational principle 274 
Vector system 3 
Verlet 185 
Vibrational properties 192 
Viewing 

- direction 24 
- coordinate system 33 
- operations 31 

transformation 32 
- volume 33 
- window 24 

Viewpoint 24 
Virtual bonds {protein representation)413 

Virtual Mos 277 
VISTA program 107 
Volume 

- buried of residues in proteins 548 
- molecular 239 

- analytical evaluation 240, 243 
- numerical evaluation 240, 247 
- quantitative relationships 257 
- topological model 260 

- solvent excluded 241,243 
Voxels 29, 240, 250, 252 
VSIE 322 

- values 285 

Wamock algorithm 46 
Water 175 

dimer 176 
Weather forecast 171 
Window 33 
Wire-frame 302 

- models 61 
WIZARD system 223, 232 
World coordinates 32 

Xoc formalism 295 
X-ray 175 

YETI program 146,161 

Zeolites 192 
Zero-differential overlap 286 
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